Force performance of steel-concrete sections in railway double-box hybrid girder cable-stayed bridge
-
摘要: 为研究铁路双边箱混合梁斜拉桥钢-混结合段的受力性能和传力机理,优化其构造形式与尺寸,取消了实桥初步设计的前承压板、钢梁埋入段、钢格室并最大限度减小剪力连接件密度,设计制作了缩尺比为1∶2.5的钢-混结合段试验模型,分析实桥各设计验算工况下结合段的应力分布、承载性能及剪力传力特征,并建立板壳-实体有限元模型补充分析了结合段长度、前承压板、剪力连接件等参数的影响。研究结果表明:构造简化后的某双边箱铁路混合梁斜拉桥钢-混结合段缩尺模型在轴压、最大正/负弯矩工况作用下,所有测点的荷载-应力曲线均呈现出良好的线性相关性,钢-混结合段受力仍处于弹性阶段;钢混界面滑移测点的荷载-滑移关系近似为线性变化,滑移量最大值为0.15 mm,且卸载后残余滑移可忽略,钢板和混凝土协同受力良好;轴压工况下钢混界面剪力呈现出“两端大、中间小”马蹄形分布特征,结合段长度越大,界面剪力及相对滑移越小;结合段长度超过2倍剪力传递长度时,钢梁和混凝土梁之间区域剪力和相对滑移量几乎为0;后承压板、前承压板、钢梁埋入段分别约承担56.0%、12.4%、11.0%的轴力,前承压板、钢梁埋入段不改变钢-混结合段钢结构和混凝土正应力变化趋势、轴力分布特征,对钢-混结合段应力和传力改善作用不明显;横隔板可改善后承压板与钢顶底板处应力集中。Abstract: To study the force performance and force transfer mechanism of railway double-box hybrid girder cable-stayed bridge and optimize its construction form and size, the front pressure plate, steel beam embedded section, and steel compartment in the preliminary design of the real bridge were canceled, and the density of the shear connector was minimized. A test model with a scale ratio of 1∶2.5 was then designed and constructed for the steel-concrete sections. The stress distribution, bearing performance, and shear transfer characteristics of the combined section were analyzed under calculation conditions of each real bridge design. The shell-solid finite element model was built to further analyze parameters including the effect of the combined section length, front pressure plate, and shear connector. Research results show that with the simplified structure, the scale model of the railway double-box hybrid girder cable-stayed bridge has seen a good linear correlation in the load-stress curve of all the measuring points under the influence of axial pressure and maximum positive/negative bending moment. The force of the steel-concrete joint section is still in the elastic stage. The load-slip relationship of the slip measuring point of the steel-concrete interface is approximately linear change, with a maximum slip value of 0.15 mm. The residual slip upon unloading can be ignored. There is also a cooperative force between the steel plate and concrete. Under the axial pressure condition, the shear force of the steel-concrete joint interface shows a horseshoe-shaped distribution featuring large ends and small middle. The larger the combined section length, the smaller the interface shear and relative slip. When the combined section length exceeds 2 times of the shear transfer length, the regional shear force and relative slip between the steel beam and the concrete beam are almost zero. The rear pressure plate, front pressure plate, and steel beam embedded section bear about 56.0%, 12.4%, and 11.0% axial force, respectively. The front pressure plate and steel beam do not change the positive stress change trend and axial force distribution characteristics of the steel structure and concrete in the steel-concrete section. No significant effect can be seen on the stress and force transfer of the steel-concrete section. The stress concentration at the rear pressure plate and the steel roof and bottom plate can be improved by the transverse partition plate.
-
表 1 各荷载工况下截面内力
Table 1. Internal forces in section for each loading condition
荷载工况 轴力/kN 弯矩/(kN·m) 轴压 -8 718.2 0.0 最大正弯矩 -6 123.6 2 259.1 最大负弯矩 -8 718.2 -3 135.5 表 2 最大正弯矩工况应力不均匀差值系数
Table 2. Uneven difference coefficients of stress under maximum positive bending moment condition
系数 A-A截面 D-D截面 I-I截面 顶板 底板 顶板 底板 顶板 底板 λmin 1.0 1.0 4.7 19.2 2.4 3.2 λmax 12.6 27.0 16.5 49.5 19.7 9.7 λ 6.3 18.0 9.5 33.0 11.4 6.43 表 3 最大负弯矩工况应力不均匀差值系数
Table 3. Uneven difference coefficients of stress under maximum negative moment condition
系数 A-A截面 D-D截面 I-I截面 顶板 底板 顶板 底板 顶板 底板 λmin 3.0 6.4 5.0 3.1 0.3 0.3 λmax 37.4 13.3 57.0 20.0 26.1 8.6 λ 23.0 8.9 32.3 13.3 11.5 5.7 -
[1] 张凯, 刘永健, 琚明杰, 等. 无格室钢-混结合段构造形式与受力性能分析[J]. 公路交通科技, 2016, 33(4): 73-79, 95.ZHANG Kai, LIU Yong-jian, JU Ming-jie, et al. Analysis of structural types and mechanical performance in steel-concrete connections without cell[J]. Journal of Highway and Transportation Research and Development, 2016, 33(4): 73-79, 95. [2] 秦凤江, 周绪红, 梁博文, 等. 大跨度自锚式悬索桥主梁钢-混结合段模型试验[J]. 中国公路学报, 2018, 31(9): 52-64.QIN Feng-jiang, ZHOU Xu-hong, LIANG Bo-wen, et al. Experiment on steel-concrete joint of hybrid girder of a long-span self-anchored suspension bridge[J]. China Journal of Highway and Transport, 2018, 31(9): 52-64. [3] 李徐阳, 张岗, 袁卓亚, 等. 燃油火灾下钢-混组合连续箱梁破坏行为[J]. 长安大学学报(自然科学版), 2023, 43(5): 40-50.LI Xu-yang, ZHANG Gang, YUAN Zhuo-ya, et al. Failure behavior of continuous steel-concrete composite box bridge girders under fuel fire[J]. Journal of Chang'an University (Natural Science Edition), 2023, 43(5): 40-50. [4] 杨仕力, 施洲, 蒲黔辉, 等. 高速铁路双箱混合梁斜拉桥钢-混结合段力学行为研究[J]. 铁道学报, 2022, 44(10): 150-160.YANG Shi-li, SHI Zhou, PU Qian-hui, et al. Study on mechanical behaviour of steel-concrete joint of high-speed railway hybrid girder cable-stayed bridge with twin-box section[J]. Journal of the China Railway Society, 2022, 44(10): 150-160. [5] 王小飞. 大跨度四线铁路混合梁斜拉桥钢-混结合段有限元分析[J]. 铁道标准设计, 2018, 62(11): 82-87.WANG Xiao-fei. Finite element analysis of steel-concrete composite segment of long-span hybrid girder cable-stayed bridge on four-track railway[J]. Railway Standard Design, 2018, 62(11): 82-87. [6] 姜文, 谭仕强. 混合体系斜拉桥钢混结合段试验模型研究[J]. 公路工程, 2017, 42(4): 102-107, 113.JIANG Wen, TAN Shi-qiang. Model test research of steel and concrete joint section for hybrid cable-stayed bridges[J]. Highway Engineering, 2017, 42(4): 102-107, 113. [7] 唐细彪, 王亚飞, 伍贤智, 等. 混合梁斜拉桥钢-混结合段模型试验研究[J]. 桥梁建设, 2019, 49(增1): 92-97.TANG Xi-biao, WANG Ya-fei, WU Xian-zhi, et al. Model test for steel-concrete joint section of hybrid girder cable-stayed bridge[J]. Bridge Construction, 2019, 49(S1): 92-97. [8] 陈志军, 周子培, 张朋, 等. 混合梁斜拉桥混凝土-钢桁结合段模型试验[J]. 土木工程与管理学报, 2019, 36(3): 34-40.CHEN Zhi-jun, ZHOU Zi-pei, ZHANG Peng, et al. Model test of concrete-steel truss joint section of hybrid cable-stayed bridge[J]. Journal of Civil Engineering and Management, 2019, 36(3): 34-40. [9] 邓淑飞, 刘永健, 宗昕. 新型钢桁梁-混凝土箱梁结合段构造形式与力学性能分析[J]. 建筑科学与工程学报, 2022, 39(6): 133-142.DENG Shu-fei, LIU Yong-Jian, ZONG Xin. Analysis on structural form and mechanical performance of an innovative steel truss girder-concrete box girder connecting section[J]. Journal of Architecture and Civil Engineering, 2022, 39(6): 133-142. [10] 林一宁, 蔡巍, 姚泽锋. 混合梁斜拉桥钢-混结合段力学性能研究[J]. 世界桥梁, 2019, 47(4): 53-57.LIN Yi-ning, CAI Wei, YAO Ze-feng. Study of mechanical performance of steel-concrete joint section in hybrid girder cable-stayed bridge[J]. World Bridges, 2019, 47(4): 53-57. [11] GU Y, NIE X, LIU Y F, et al. Experimental and numerical study of steel-to-concrete joint section in hybrid cable-stayed bridges[J]. Journal of Constructional Steel Research, 2021, 187: 106982. [12] 邹世华, 廖轩, 陈宇. 混合梁斜拉桥钢-混结合段力学性能模型试验研究[J]. 世界桥梁, 2021, 49(4): 27-34.ZOU Shi-hua, LIAO Xuan, CHEN Yu. Study of model tests of mechanical property of steel-concrete joint section for hybrid girder cable-stayed bridge[J]. World Bridges, 2021, 49(4): 27-34. [13] 江祥林. 大跨径混合梁斜拉桥结合段受力性能试验[D]. 西安: 长安大学, 2015.JIANG Xiang-lin. Experimental study on steel-concrete connection segment in large-span hybrid cable-stayed bridge[D]. Xi'an: Chang'an University, 2015. [14] 张奇志, 吴宝诗. 九江长江公路大桥钢-混结合段模型试验研究[J]. 桥梁建设, 2013, 43(5): 68-74.ZHANG Qi-zhi, WU Bao-shi. Model test study of steel and concrete joint section of Jiujiang Changjiang River Highway Bridge[J]. Bridge Construction, 2013, 43(5): 68-74. [15] 袁辉辉, 黄珍珍, 吴庆雄, 等. 大跨混合连续箱梁桥钢混结合段传力机理试验与分析[J]. 湖南大学学报(自然科学版), 2023, 50(7): 44-56.YUAN Hui-hui, HUANG Zhen-zhen, WU Qing-xiong, et al. Testing and analysis on force transmission mechanism of steel-concrete joint of large-span hybrid continuous continuous girder bridge[J]. Journal of Hunan University (Natural Sciences), 2023, 50(7): 44-56. [16] 张光辉, 陈聪, 刘玉擎. 混合梁结合部格室-承压板协同作用机理[J]. 同济大学学报(自然科学版), 2017, 45(5): 658-663.ZHANG Guang-hui, CHEN Cong, LIU Yu-qing. Load transfer mechanism between cells and bearing-plate in hybrid girder joint[J]. Journal of Tongji University (Natural Science), 2017, 45(5): 658-663. [17] 姚亚东, 杨永清, 刘振标, 等. 大跨度铁路钢箱梁混合斜拉桥钢混结合段模型试验研究[J]. 铁道学报, 2015, 37(3): 79-84.YAO Ya-dong, YANG Yong-qing, LIU Zhen-biao, et al. Model tests on the steel-concrete joint section of hybrid cable-stayed railway bridge with long-span steel box girder[J]. Journal of the China Railway Society, 2015, 37(3): 79-84. [18] 施洲, 贾文涛, 宁伯伟, 等. 高铁大跨度斜拉桥主梁钢混结合段力学性能研究[J]. 铁道学报, 2023, 45(3): 37-46.SHI Zhou, JIA Wen-tao, NING Bo-wei, et al. Study on mechanical performance of steel-concrete composite segment of main girder of long span cable-stayed railway bridge[J]. Journal of the China Railway Society, 2023, 45(3): 37-46. [19] YANG S, PU Q, SHI Z, et al. Mechanical behavior of steel-concrete composite joints in railway hybrid cable-stayed bridges[J]. Journal of Constructional Steel Research, 2020, 173: 106242. [20] 施洲, 张莹, 李英铭, 等. 铁路混合梁钢-混结合段受力及理论计算[J]. 工程力学, 2024, 41(增1): 282-291.SHI Zhou, ZHANG Ying, LI Ying-ming, et al. Stress behavior and theoretical calculation of steel-concrete joint of railway hybrid girder[J]. Engineering Mechanics, 2024, 41(S1): 282-291. [21] 张建军, 李松, 高安荣, 等. 鄂东长江大桥钢-混结合段施工关键技术方案[J]. 桥梁建设, 2009, 39(增1): 27-31.ZHANG Jian-jun, LI Song, GAO An-rong, et al. Key technique schemes for construction of steel and concrete joint section of Edong Changjiang River Bridge[J]. Bridge Construction, 2009(S1): 27-31. [22] 程高, 张之恒, 陈浩, 等. 非同时受压矩形钢管混凝土界面传力特性研究[J]. 中国公路学报, 2023, 36(2): 179-189.CHENG Gao, ZHANG Zhi-heng, CHEN Hao, et al. Analysis on interfacial force transfer characteristics of concrete-filled rectangular steel tube under compression[J]. China Journal of Highway and Transport, 2023, 36(2): 179-189. [23] 程高, 张之恒, 谢亮, 等. 基于桁梁实桥试验的钢管混凝土界面传力机制[J]. 交通运输工程学报, 2022, 22(6): 158-168. doi: 10.19818/j.cnki.1671-1637.2022.06.010CHENG Gao, ZHANG Zhi-heng, XIE Liang, et al. Interfacial force transfer mechanism of concrete-filled steel tube based on field truss bridge test[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 158-168. doi: 10.19818/j.cnki.1671-1637.2022.06.010 [24] 程高, 姬子田, 周松腾, 等. 超大长宽比加劲型钢箱混凝土柱轴压性能分析[J]. 桥梁建设, 2023, 53(4): 78-86.CHENG Gao, JI Zi-tian, ZHOU Song-teng, et al. Analysis of axial compressive performance of stiffened concrete-filled steel box column with large aspect ratio[J]. Bridge Construction, 2023, 53(4): 78-86. [25] 刘永健, 刘君平, 池建军. 钢管混凝土界面抗剪粘结滑移力学性能试验[J]. 广西大学学报(自然科学版), 2010, 35(1): 17-23, 29.LIU Yong-jian, LIU Jun-ping, CHI Jian-jun. Shear bond behaviors at interface of concrete-filled steel tube[J]. Journal of Guangxi University (Natural Science Edition), 2010, 35(1): 17-23, 29. [26] 刘永健, 刘江, 周绪红, 等. 桥梁长寿命设计理论综述[J]. 交通运输工程学报, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001LIU Yong-jian, LIU Jiang, ZHOU Xu-hong, et al. Review on long-life design theory for bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001 -
下载: