留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁路双边箱混合梁斜拉桥钢-混结合段受力性能

康炜 李伟 文强 程高 房帅平 孟祥建 刘永健 文博华

康炜, 李伟, 文强, 程高, 房帅平, 孟祥建, 刘永健, 文博华. 铁路双边箱混合梁斜拉桥钢-混结合段受力性能[J]. 交通运输工程学报, 2025, 25(3): 114-129. doi: 10.19818/j.cnki.1671-1637.2025.03.007
引用本文: 康炜, 李伟, 文强, 程高, 房帅平, 孟祥建, 刘永健, 文博华. 铁路双边箱混合梁斜拉桥钢-混结合段受力性能[J]. 交通运输工程学报, 2025, 25(3): 114-129. doi: 10.19818/j.cnki.1671-1637.2025.03.007
KANG Wei, LI Wei, WEN Qiang, CHENG Gao, FANG Shuai-ping, MENG Xiang-jian, LIU Yong-jian, WEN Bo-hua. Force performance of steel-concrete sections in railway double-box hybrid girder cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 114-129. doi: 10.19818/j.cnki.1671-1637.2025.03.007
Citation: KANG Wei, LI Wei, WEN Qiang, CHENG Gao, FANG Shuai-ping, MENG Xiang-jian, LIU Yong-jian, WEN Bo-hua. Force performance of steel-concrete sections in railway double-box hybrid girder cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 114-129. doi: 10.19818/j.cnki.1671-1637.2025.03.007

铁路双边箱混合梁斜拉桥钢-混结合段受力性能

doi: 10.19818/j.cnki.1671-1637.2025.03.007
基金项目: 

国家自然科学基金项目 52478126

陕西省秦创原“科学家+工程师”队伍建设项目 2022KXJ-036

陕西省重点研发计划 2024GX-ZDCYL-03-09

中铁第一勘察设计院集团有限公司科技研发项目 20-12

陕西省交通运输厅交通运输科研项目 23-20X

详细信息
    作者简介:

    康炜(1973-), 男, 甘肃渭源人, 中铁第一勘察设计院集团有限公司正高级工程师, 从事复杂桥梁结构设计研究

    通讯作者:

    程高(1988-), 男, 河南泌阳人, 长安大学高级工程师, 工学博士, 博士后

  • 中图分类号: U448.27

Force performance of steel-concrete sections in railway double-box hybrid girder cable-stayed bridge

Funds: 

National Natural Science Foundation of China 52478126

Scientist + Engineer Team Construction Program of Shaanxi Qinchuangyuan 2022KXJ-036

Key Research and Development Program of Shaanxi Province 2024GX-ZDCYL-03-09

Science and Technology R&D Project of China Railway First Survey and Design Institute Group Co., Ltd. 20-12

Transportation Research Project of of Department of Transport of Shaanxi Provincial 23-20X

More Information
    Corresponding author: CHENG Gao (1988-), male, senior engineer, PhD, postdoctor, chengg@chd.edu.cn
Article Text (Baidu Translation)
  • 摘要: 为研究铁路双边箱混合梁斜拉桥钢-混结合段的受力性能和传力机理,优化其构造形式与尺寸,取消了实桥初步设计的前承压板、钢梁埋入段、钢格室并最大限度减小剪力连接件密度,设计制作了缩尺比为1∶2.5的钢-混结合段试验模型,分析实桥各设计验算工况下结合段的应力分布、承载性能及剪力传力特征,并建立板壳-实体有限元模型补充分析了结合段长度、前承压板、剪力连接件等参数的影响。研究结果表明:构造简化后的某双边箱铁路混合梁斜拉桥钢-混结合段缩尺模型在轴压、最大正/负弯矩工况作用下,所有测点的荷载-应力曲线均呈现出良好的线性相关性,钢-混结合段受力仍处于弹性阶段;钢混界面滑移测点的荷载-滑移关系近似为线性变化,滑移量最大值为0.15 mm,且卸载后残余滑移可忽略,钢板和混凝土协同受力良好;轴压工况下钢混界面剪力呈现出“两端大、中间小”马蹄形分布特征,结合段长度越大,界面剪力及相对滑移越小;结合段长度超过2倍剪力传递长度时,钢梁和混凝土梁之间区域剪力和相对滑移量几乎为0;后承压板、前承压板、钢梁埋入段分别约承担56.0%、12.4%、11.0%的轴力,前承压板、钢梁埋入段不改变钢-混结合段钢结构和混凝土正应力变化趋势、轴力分布特征,对钢-混结合段应力和传力改善作用不明显;横隔板可改善后承压板与钢顶底板处应力集中。

     

  • 图  1  结合段位置及全桥布置(单位:m)

    Figure  1.  Location of combined section and arrangement of whole bridge (unit: m)

    图  2  钢-混结合段横截面(单位:mm)

    Figure  2.  Cross-section of steel-mixed section (unit: mm)

    图  3  I-I钢-混结合段剖面(单位:mm)

    Figure  3.  Section of I-I steel-mixed section (unit: mm)

    图  4  剪力传递长度

    Figure  4.  Shear force transmission length

    图  5  模型立面及预埋应变测点布置(单位:mm)

    Figure  5.  Arrangement of model elevation and pre-embedded strain measurement points (unit: mm)

    图  6  表面测点布置(单位:mm)

    Figure  6.  Layouts of surface measurement points (unit: mm)

    图  7  试验模型布置

    Figure  7.  Layouts of test model

    图  8  最大正弯矩工况测点荷载-应力曲线

    Figure  8.  Load-stress curves at measurement points under maximum positive bending moment condition

    图  9  最大负弯矩工况测点荷载-应力曲线

    Figure  9.  Load-stress curves at measurement points under maximum negative moment condition

    图  10  轴压工况剪力连接件应力纵向分布规律

    Figure  10.  Longitudinal distribution pattern of stresses in shear connectors under axial compression condition

    图  11  最大正弯矩工况应力纵向分布规律

    Figure  11.  Longitudinal distribution patterns of stress under maximum positive bending moment condition

    图  12  最大负弯矩工况应力纵向分布规律

    Figure  12.  Longitudinal distribution patterns of stress under maximum negative moment condition

    图  13  最大正弯矩工况截面应力分布规律(单位:MPa)

    Figure  13.  Stress distribution patterns of cross-section under maximum positive bending moment condition (unit: MPa)

    图  14  最大负弯矩工况截面应力分布规律(单位:MPa)

    Figure  14.  Stress distribution patterns of cross-section under maximum negative moment condition (unit: MPa)

    图  15  钢-混界面相对滑移

    Figure  15.  Relative slips at steel-mix interface

    图  16  有限元模型(单位:mm)

    Figure  16.  Finite element model (unit: mm)

    图  17  试验值与有限元计算值对比

    Figure  17.  Comparisons of experimental values and finite element calculation values

    图  18  多格室模型示意

    Figure  18.  Schematics of multigrid compartment model

    图  19  无格室模型与多格室模型纵桥向应力对比

    Figure  19.  Comparison of longitudinal bridge stress between non-compartment and multi-compartment model

    图  20  分担轴力比例

    Figure  20.  Ratios of share axial force

    图  21  无格室模型与前承压板模型纵桥向应力对比

    Figure  21.  Comparison of longitudinal bridge stress between non-compartment model and front bearing plate model

    图  22  前承压板轴力传递特征

    Figure  22.  Axial force transfer characteristics of front pressure plate

    图  23  结合段长度对相对滑移的影响

    Figure  23.  Effect of binding segment length on relative slip

    表  1  各荷载工况下截面内力

    Table  1.   Internal forces in section for each loading condition

    荷载工况 轴力/kN 弯矩/(kN·m)
    轴压 -8 718.2 0.0
    最大正弯矩 -6 123.6 2 259.1
    最大负弯矩 -8 718.2 -3 135.5
    下载: 导出CSV

    表  2  最大正弯矩工况应力不均匀差值系数

    Table  2.   Uneven difference coefficients of stress under maximum positive bending moment condition

    系数 A-A截面 D-D截面 I-I截面
    顶板 底板 顶板 底板 顶板 底板
    λmin 1.0 1.0 4.7 19.2 2.4 3.2
    λmax 12.6 27.0 16.5 49.5 19.7 9.7
    λ 6.3 18.0 9.5 33.0 11.4 6.43
    下载: 导出CSV

    表  3  最大负弯矩工况应力不均匀差值系数

    Table  3.   Uneven difference coefficients of stress under maximum negative moment condition

    系数 A-A截面 D-D截面 I-I截面
    顶板 底板 顶板 底板 顶板 底板
    λmin 3.0 6.4 5.0 3.1 0.3 0.3
    λmax 37.4 13.3 57.0 20.0 26.1 8.6
    λ 23.0 8.9 32.3 13.3 11.5 5.7
    下载: 导出CSV
  • [1] 张凯, 刘永健, 琚明杰, 等. 无格室钢-混结合段构造形式与受力性能分析[J]. 公路交通科技, 2016, 33(4): 73-79, 95.

    ZHANG Kai, LIU Yong-jian, JU Ming-jie, et al. Analysis of structural types and mechanical performance in steel-concrete connections without cell[J]. Journal of Highway and Transportation Research and Development, 2016, 33(4): 73-79, 95.
    [2] 秦凤江, 周绪红, 梁博文, 等. 大跨度自锚式悬索桥主梁钢-混结合段模型试验[J]. 中国公路学报, 2018, 31(9): 52-64.

    QIN Feng-jiang, ZHOU Xu-hong, LIANG Bo-wen, et al. Experiment on steel-concrete joint of hybrid girder of a long-span self-anchored suspension bridge[J]. China Journal of Highway and Transport, 2018, 31(9): 52-64.
    [3] 李徐阳, 张岗, 袁卓亚, 等. 燃油火灾下钢-混组合连续箱梁破坏行为[J]. 长安大学学报(自然科学版), 2023, 43(5): 40-50.

    LI Xu-yang, ZHANG Gang, YUAN Zhuo-ya, et al. Failure behavior of continuous steel-concrete composite box bridge girders under fuel fire[J]. Journal of Chang'an University (Natural Science Edition), 2023, 43(5): 40-50.
    [4] 杨仕力, 施洲, 蒲黔辉, 等. 高速铁路双箱混合梁斜拉桥钢-混结合段力学行为研究[J]. 铁道学报, 2022, 44(10): 150-160.

    YANG Shi-li, SHI Zhou, PU Qian-hui, et al. Study on mechanical behaviour of steel-concrete joint of high-speed railway hybrid girder cable-stayed bridge with twin-box section[J]. Journal of the China Railway Society, 2022, 44(10): 150-160.
    [5] 王小飞. 大跨度四线铁路混合梁斜拉桥钢-混结合段有限元分析[J]. 铁道标准设计, 2018, 62(11): 82-87.

    WANG Xiao-fei. Finite element analysis of steel-concrete composite segment of long-span hybrid girder cable-stayed bridge on four-track railway[J]. Railway Standard Design, 2018, 62(11): 82-87.
    [6] 姜文, 谭仕强. 混合体系斜拉桥钢混结合段试验模型研究[J]. 公路工程, 2017, 42(4): 102-107, 113.

    JIANG Wen, TAN Shi-qiang. Model test research of steel and concrete joint section for hybrid cable-stayed bridges[J]. Highway Engineering, 2017, 42(4): 102-107, 113.
    [7] 唐细彪, 王亚飞, 伍贤智, 等. 混合梁斜拉桥钢-混结合段模型试验研究[J]. 桥梁建设, 2019, 49(增1): 92-97.

    TANG Xi-biao, WANG Ya-fei, WU Xian-zhi, et al. Model test for steel-concrete joint section of hybrid girder cable-stayed bridge[J]. Bridge Construction, 2019, 49(S1): 92-97.
    [8] 陈志军, 周子培, 张朋, 等. 混合梁斜拉桥混凝土-钢桁结合段模型试验[J]. 土木工程与管理学报, 2019, 36(3): 34-40.

    CHEN Zhi-jun, ZHOU Zi-pei, ZHANG Peng, et al. Model test of concrete-steel truss joint section of hybrid cable-stayed bridge[J]. Journal of Civil Engineering and Management, 2019, 36(3): 34-40.
    [9] 邓淑飞, 刘永健, 宗昕. 新型钢桁梁-混凝土箱梁结合段构造形式与力学性能分析[J]. 建筑科学与工程学报, 2022, 39(6): 133-142.

    DENG Shu-fei, LIU Yong-Jian, ZONG Xin. Analysis on structural form and mechanical performance of an innovative steel truss girder-concrete box girder connecting section[J]. Journal of Architecture and Civil Engineering, 2022, 39(6): 133-142.
    [10] 林一宁, 蔡巍, 姚泽锋. 混合梁斜拉桥钢-混结合段力学性能研究[J]. 世界桥梁, 2019, 47(4): 53-57.

    LIN Yi-ning, CAI Wei, YAO Ze-feng. Study of mechanical performance of steel-concrete joint section in hybrid girder cable-stayed bridge[J]. World Bridges, 2019, 47(4): 53-57.
    [11] GU Y, NIE X, LIU Y F, et al. Experimental and numerical study of steel-to-concrete joint section in hybrid cable-stayed bridges[J]. Journal of Constructional Steel Research, 2021, 187: 106982.
    [12] 邹世华, 廖轩, 陈宇. 混合梁斜拉桥钢-混结合段力学性能模型试验研究[J]. 世界桥梁, 2021, 49(4): 27-34.

    ZOU Shi-hua, LIAO Xuan, CHEN Yu. Study of model tests of mechanical property of steel-concrete joint section for hybrid girder cable-stayed bridge[J]. World Bridges, 2021, 49(4): 27-34.
    [13] 江祥林. 大跨径混合梁斜拉桥结合段受力性能试验[D]. 西安: 长安大学, 2015.

    JIANG Xiang-lin. Experimental study on steel-concrete connection segment in large-span hybrid cable-stayed bridge[D]. Xi'an: Chang'an University, 2015.
    [14] 张奇志, 吴宝诗. 九江长江公路大桥钢-混结合段模型试验研究[J]. 桥梁建设, 2013, 43(5): 68-74.

    ZHANG Qi-zhi, WU Bao-shi. Model test study of steel and concrete joint section of Jiujiang Changjiang River Highway Bridge[J]. Bridge Construction, 2013, 43(5): 68-74.
    [15] 袁辉辉, 黄珍珍, 吴庆雄, 等. 大跨混合连续箱梁桥钢混结合段传力机理试验与分析[J]. 湖南大学学报(自然科学版), 2023, 50(7): 44-56.

    YUAN Hui-hui, HUANG Zhen-zhen, WU Qing-xiong, et al. Testing and analysis on force transmission mechanism of steel-concrete joint of large-span hybrid continuous continuous girder bridge[J]. Journal of Hunan University (Natural Sciences), 2023, 50(7): 44-56.
    [16] 张光辉, 陈聪, 刘玉擎. 混合梁结合部格室-承压板协同作用机理[J]. 同济大学学报(自然科学版), 2017, 45(5): 658-663.

    ZHANG Guang-hui, CHEN Cong, LIU Yu-qing. Load transfer mechanism between cells and bearing-plate in hybrid girder joint[J]. Journal of Tongji University (Natural Science), 2017, 45(5): 658-663.
    [17] 姚亚东, 杨永清, 刘振标, 等. 大跨度铁路钢箱梁混合斜拉桥钢混结合段模型试验研究[J]. 铁道学报, 2015, 37(3): 79-84.

    YAO Ya-dong, YANG Yong-qing, LIU Zhen-biao, et al. Model tests on the steel-concrete joint section of hybrid cable-stayed railway bridge with long-span steel box girder[J]. Journal of the China Railway Society, 2015, 37(3): 79-84.
    [18] 施洲, 贾文涛, 宁伯伟, 等. 高铁大跨度斜拉桥主梁钢混结合段力学性能研究[J]. 铁道学报, 2023, 45(3): 37-46.

    SHI Zhou, JIA Wen-tao, NING Bo-wei, et al. Study on mechanical performance of steel-concrete composite segment of main girder of long span cable-stayed railway bridge[J]. Journal of the China Railway Society, 2023, 45(3): 37-46.
    [19] YANG S, PU Q, SHI Z, et al. Mechanical behavior of steel-concrete composite joints in railway hybrid cable-stayed bridges[J]. Journal of Constructional Steel Research, 2020, 173: 106242.
    [20] 施洲, 张莹, 李英铭, 等. 铁路混合梁钢-混结合段受力及理论计算[J]. 工程力学, 2024, 41(增1): 282-291.

    SHI Zhou, ZHANG Ying, LI Ying-ming, et al. Stress behavior and theoretical calculation of steel-concrete joint of railway hybrid girder[J]. Engineering Mechanics, 2024, 41(S1): 282-291.
    [21] 张建军, 李松, 高安荣, 等. 鄂东长江大桥钢-混结合段施工关键技术方案[J]. 桥梁建设, 2009, 39(增1): 27-31.

    ZHANG Jian-jun, LI Song, GAO An-rong, et al. Key technique schemes for construction of steel and concrete joint section of Edong Changjiang River Bridge[J]. Bridge Construction, 2009(S1): 27-31.
    [22] 程高, 张之恒, 陈浩, 等. 非同时受压矩形钢管混凝土界面传力特性研究[J]. 中国公路学报, 2023, 36(2): 179-189.

    CHENG Gao, ZHANG Zhi-heng, CHEN Hao, et al. Analysis on interfacial force transfer characteristics of concrete-filled rectangular steel tube under compression[J]. China Journal of Highway and Transport, 2023, 36(2): 179-189.
    [23] 程高, 张之恒, 谢亮, 等. 基于桁梁实桥试验的钢管混凝土界面传力机制[J]. 交通运输工程学报, 2022, 22(6): 158-168. doi: 10.19818/j.cnki.1671-1637.2022.06.010

    CHENG Gao, ZHANG Zhi-heng, XIE Liang, et al. Interfacial force transfer mechanism of concrete-filled steel tube based on field truss bridge test[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 158-168. doi: 10.19818/j.cnki.1671-1637.2022.06.010
    [24] 程高, 姬子田, 周松腾, 等. 超大长宽比加劲型钢箱混凝土柱轴压性能分析[J]. 桥梁建设, 2023, 53(4): 78-86.

    CHENG Gao, JI Zi-tian, ZHOU Song-teng, et al. Analysis of axial compressive performance of stiffened concrete-filled steel box column with large aspect ratio[J]. Bridge Construction, 2023, 53(4): 78-86.
    [25] 刘永健, 刘君平, 池建军. 钢管混凝土界面抗剪粘结滑移力学性能试验[J]. 广西大学学报(自然科学版), 2010, 35(1): 17-23, 29.

    LIU Yong-jian, LIU Jun-ping, CHI Jian-jun. Shear bond behaviors at interface of concrete-filled steel tube[J]. Journal of Guangxi University (Natural Science Edition), 2010, 35(1): 17-23, 29.
    [26] 刘永健, 刘江, 周绪红, 等. 桥梁长寿命设计理论综述[J]. 交通运输工程学报, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001

    LIU Yong-jian, LIU Jiang, ZHOU Xu-hong, et al. Review on long-life design theory for bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  94
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 录用日期:  2025-01-12
  • 修回日期:  2024-11-29
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回