Comparison of thermal dissipation performances between carbon-ceramic and cast steel brake discs for high-speed train
-
摘要: 为研究用于高速列车的传统铸钢制动盘以及新型碳陶制动盘在400 km·h-1制动初速度下的制动热散逸性能,分别建立了包含碳陶制动盘与铸钢制动盘的高速列车车头复杂模型,在车头模型周围建立空气域,运用流-固-热耦合仿真方法,分析并比较了碳陶制动盘和铸钢制动盘在紧急制动条件下的温度变化及其对周围空气域的影响;分别进行了碳陶制动盘和铸钢制动盘与温度相关的台架试验,对仿真的准确性进行验证。仿真结果表明:在400 km·h-1的制动初速度条件下,碳陶制动盘摩擦表面温度在制动开始后86.3 s时达到峰值1 098.56 K;铸钢制动盘的整体温度变化趋势与碳陶制动盘相似,其摩擦面最高温度在制动开始后73 s时达到峰值1 019.26 K;与铸钢制动盘相比,碳陶制动盘对周围空气域的温度影响更大,可能会在高速列车的转向架区域带来热安全隐患,两者空气域的最大温度差可达210 K;与铸钢制动盘相比,碳陶制动盘的材料和结构均使其内部热传导速率更快,摩擦面温度分布更为均匀,不同径向区域间的温度梯度较小,具有更优的热运用性能;台架试验的对比结果表明本文所建立的包含制动盘的高速列车车头流-固-热耦合仿真模型可以准确预测制动盘在制动过程中的温度变化趋势,并提供详细的温度变化云图。Abstract: To investigate the braking thermal dissipation performance of traditional cast steel brake discs and new carbon-ceramic brake discs used for high-speed trains at an initial braking speed of 400 km·h-1, complex front head models of high-speed trains containing carbon-ceramic brake discs and cast steel brake discs were established. An air domain was constructed around the front model. A fluid-solid-thermal coupling simulation method was used to analyze and compare the temperature changes of carbon-ceramic brake discs and cast steel brake discs under emergency braking conditions and their effects on the surrounding air domain. Temperature-related bench tests were also conducted for carbon-ceramic brake discs and cast steel brake discs to verify the accuracy of the simulation. Simulation results show that under an initial braking speed of 400 km·h-1, the friction surface temperature of the carbon-ceramic brake disc reaches a peak of 1 098.56 K at 86.3 s after braking starts. The overall temperature change trend of the cast steel brake disc is similar to that of the carbon-ceramic brake disc, and their peak friction surface temperature reaches 1 019.26 K at 73 s after braking starts. However, the carbon-ceramic brake disc has a greater impact on the temperature changes in the surrounding air domain, which may pose thermal safety risks in the bogie area of high-speed trains, and the maximum temperature difference between the two air domains can reach 210 K. Compared with the cast steel brake disc, the material and structure of the carbon-ceramic brake disc allow for a faster internal heat conduction rate, a more uniform temperature distribution on the friction surface, and a smaller temperature gradient between different radial areas, resulting in better thermal performance. However, the carbon-ceramic brake disc has a greater impact on the temperature changes in the surrounding air domain, which may pose thermal safety risks in the bogie area of high-speed trains. The comparative results of the bench tests show that the fluid-solid-thermal coupling simulation model of the high-speed train front containing brake discs can accurately predict the trend of temperature changes during braking and can generate detailed temperature change cloud maps.
-
表 1 碳陶制动盘材料参数
Table 1. Material parameters of carbon-ceramic brake disc
参数 温度/K 数值 密度/(kg·m-3) 2 300 比热容/ [J·(kg·K)-1] 373.15 800 573.15 1 300 773.15 1 550 973.15 1 700 1 173.15 1 600 热导率/ [W·(m·K)-1] 373.15 66.0 573.15 55.6 773.15 51.8 973.15 50.6 1 173.15 47.0 表 2 铸钢制动盘材料参数
Table 2. Material parameters of cast steel brake disc
参数 温度/K 数值 密度/(kg·m-3) 7 980 比热容/ [J·(kg·K)-1] 373.15 487 573.15 565 773.15 667 973.15 805 1 173.15 805 热导率/ [W·(m·K)-1] 373.15 45.9 573.15 41.2 773.15 37.6 973.15 32.8 1 173.15 26.0 表 3 制动工况参数
Table 3. Braking condition
速度/(km·h-1) 减速度/(m·s-2) 0~200 1.25 200~400 0.98 表 4 空气参数
Table 4. Parameters of air
密度/ (kg·m-3) 比热容/ [J· (kg·K)-1] 热导率/ [W·(m·K)-1] 黏度/ [kg·(m·s)-1] 随温度变化 1 006.43 0.024 2 1.789 4e-5 -
[1] DAI Z Y, LI T, ZHANG W H, et al. Investigation on aerodynamic characteristics of high-speed trains with shields beneath bogies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2024, 246: 105666. [2] LIU Y N, ZHANG J, YI S T. Numerical simulation and prediction of aerodynamic noise of high-speed trains[J]. Noise & Vibration Worldwide, 2024, 55(1/2): 16-32. [3] HAO Y C, JIA L M, ZIO E, et al. A network-based approach to improving robustness of a high-speed train by structure adjustment[J]. Reliability Engineering & System Safety, 2024, 243: 109857. https://www.sciencedirect.com/science/article/pii/S0951832023007718 [4] ZHANG P, ZHANG L, WEI D B, et al. A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature[J]. Wear, 2020, 444: 203182. [5] ZHAO C L, WANG T T, SHI F S, et al. Numerical study of snow accumulation on bogies for long marshalling high-speed trains[J]. Mechanics Based Design of Structures and Machines, 2024, 52(11): 8685-8705. doi: 10.1080/15397734.2024.2325667 [6] SANG H T, ZENG J, WANG Q S, et al. Theoretical study on wheel wear mechanism of high-speed train under different braking modes[J]. Wear, 2024, 540: 205262. [7] XIE X D, LI Z Q, DOMBLESKY J P, et al. Study of material recrystallized regions on deformation and cracking behaviours in cast steel brake discs[J]. Engineering Failure Analysis, 2022, 140: 106508. [8] KIM H S, JO M, PARK J Y, et al. Effects of Ti microalloying on the microstructure and mechanical properties of acicular ferrite casting steel for high-speed railway brake discs[J]. Materials Science and Engineering: A, 2022, 857: 144125. [9] YOO J J, BYUN K S. Development of sensor for the real-time monitoring of brake pad wear and brake disc temperature in high temperature[J]. International Journal of Automotive Technology, 2023, 24(6): 1603-1613. doi: 10.1007/s12239-023-0129-z [10] YAN H B, WU W T, FENG S S, et al. Role of vane configuration on the heat dissipation performance of ventilated brake discs[J]. Applied Thermal Engineering, 2018, 136: 118-130. [11] SUO R Q, SHI X L. Temperature field and stress field distribution of forged steel brake disc for high speed train[J]. Jordan Journal of Mechanical and Industrial Engineering, 2022, 16(1): 113-121. [12] JIANG L, JIANG Y L, YU L, et al. Thermo-mechanical coupling analyses for Al alloy brake discs with Al2O3-SiC(3D)/Al alloy composite wear-resisting surface layer for high-speed trains[J]. Materials, 2019, 12(19): 3155. [13] LING H, MENG D J, ZHANG L J, et al. An investigation of initial topography on thermoelastic behavior of brake disc under thermal load[J]. Mechanical Systems and Signal Processing, 2023, 200: 110521. https://www.sciencedirect.com/science/article/pii/S0888327023004296 [14] DERESSA K T, AMBIE D A. Non-axisymmetric modeling of a moving heat source for thermal stress and fatigue analysis of railway vehicle disc brakes[J]. Urban Rail Transit, 2024, 10(1): 42-64. [15] TANG J H, BRYANT D, QI H S, et al. Simplified three-dimensional finite element hot-spotting modelling of a pin-mounted vented brake disc: an investigation of hot-spotting determinants[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232(7): 877-895. [16] BAUZIN J G, LARAQI N. Three-dimensional analytical calculation of the temperature in a brake disc of a high-speed train[J]. Applied Thermal Engineering, 2019, 154: 668-675. [17] XIE X D, LI Z Q, DOMBLESKY J P, et al. Analysis of deep crack formation and propagation in railway brake discs[J]. Engineering Failure Analysis, 2021, 128: 105600. [18] MA L, ZHANG M X, DING S Y, et al. Influence of braking speed on the friction and wear characteristics of high-speed railway braking materials under high ambient humidity conditions[J]. Materials, 2023, 16(17): 6026. [19] KASEM H, BRUNEL J F, DUFRÉNOY P, et al. Thermal levels and subsurface damage induced by the occurrence of hot spots during high-energy braking[J]. Wear, 2011, 270(5/6): 355-364. [20] KASEM H, DUFRÉNOY P, DESPLANQUES Y, et al. On the use of calcium fluoride as an infrared-transparent first body for in situ temperature measurements in sliding contact[J]. Tribology Letters, 2011, 42(1): 27-36. [21] 于大海. 制动盘材料摩擦热斑的试验研究与数值模拟[D]. 北京: 北京交通大学, 2011.YU Da-hai. Experimental research and simulation analysis on hot spot of brake disc material[D]. Beijing: Beijing Jiaotong University, 2011. [22] GOO B C, LIM C H. Thermal fatigue of cast iron brake disk materials[J]. Journal of Mechanical Science and Technology, 2012, 26(6): 1719-1724. [23] KUMAR M, BOIDIN X, DESPLANQUES Y, et al. Influence of various metallic fillers in friction materials on hot-spot appearance during stop braking[J]. Wear, 2011, 270(5/6): 371-381. https://www.sciencedirect.com/science/article/pii/S0043164810004230 [24] CHEN Q, ZHU L A, BAI S X, et al. Preparation and properties of highly thermal conductive C/C-SiC[J]. Materials Today Communications, 2023, 36: 106595. [25] MORALES-FLÓREZ V, DOMÍNGUEZ-RODRÍGUEZ A. Mechanical properties of ceramics reinforced with allotropic forms of carbon[J]. Progress in Materials Science, 2022, 128: 100966. [26] MA X, SUN H D, KOU S J, et al. Flexural strength and wear resistance of C/C-SiC brake materials improved by introducing SiC ceramics into carbon fiber bundles[J]. Ceramics International, 2021, 47(17): 24130-24138. [27] DENG P Y, LI P T, XIAO P, et al. Oxidation behaviour of C/C-SiC brake discs tested on full-scale bench rig[J]. Ceramics International, 2021, 47(24): 34783-34793. [28] LIANG H Q, SHAN C S, WANG X P, et al. Matching analysis of carbon-ceramic brake discs for high-speed trains[J]. Applied Sciences, 2023, 13(7): 4532. [29] 钱飞飞, 曾梁彬, 史耀君, 等. 高速动车组碳陶(C/C-SiC)制动盘的研究[J]. 轨道交通材料, 2023(3): 11-16.QIAN Fei-fei, ZENG Liang-bin, SHI Yao-jun, et al. Research of C/C-SiC brake discs for high speed EMUs[J]. Materials for Rail Transportation System, 2023(3): 11-16. [30] 杨川, 乔峰, 姚风龙, 等. 碳陶制动盘特性及在轨道车辆上的应用研究[J]. 轨道交通材料, 2023(6): 10-13.YANG Chuan, QIAO Feng, YAO Feng-long, et al. Characteristics of C/Ceramic brake discs and their application in rail vehicles[J]. Materials for Rail Transportation System, 2023(6): 10-13. [31] 史耀君, 周华杉, 钱飞飞, 等. 增碳工艺对碳陶复合材料制动盘性能影响研究[J]. 轨道交通材料, 2023(4): 19-23.SHI Yao-jun, ZHOU Hua-shan, QIAN Fei-fei, et al. A study of the influence of recarburizing process on the performance of carbon-ceramic composite brake disk[J]. Materials for Rail Transportation System, 2023(4): 19-23. [32] LI Z, XIAO P, ZHANG B G, et al. Preparation and tribological properties of C/C-SiC brake composites modified by in situ grown carbon nanofibers[J]. Ceramics International, 2015, 41(9): 11733-11740. https://www.sciencedirect.com/science/article/pii/S0272884215010846 [33] 周高伟, 段军军, 史月昆, 等. 制动过程中闸片材料与制动盘温度关系试验研究[J]. 润滑与密封, 2023, 48(1): 142-149.ZHOU Gao-wei, DUAN Jun-jun, SHI Yue-kun, et al. Experimental study on the relationship between brake pad material and brake disc temperature during braking[J]. Lubrication Engineering, 2023, 48(1): 142-149. [34] CHEN F, LI Z, LUO Y, et al. Braking behaviors of Cu-based PM brake pads mating with C/C-SiC and 30CrMnSi steel discs under high-energy braking[J]. Wear, 2021, 486: 204019. [35] HUANG R J, DENG J L, MA X, et al. Modifying C/C-SiC brake pads with different Fe-Si alloy phases to improve the wear resistance of full-carbon/ceramic brake pair[J]. Ceramics International, 2024, 50(7): 10582-10592. [36] 金星, 洪晨, 刘楠, 等. 碳陶轴装制动盘泵风效应及对流散热性能数值仿真研究[J]. 武汉理工大学学报, 2023, 45(11): 132-138, 156.JIN Xing, HONG Chen, LIU Nan, et al. Numerical study on air pumping effect and convective heat dissipation performance of carbon ceramic axle-mounted brake discs[J]. Journal of Wuhan University of Technology, 2023, 45(11): 132-138, 156. [37] QU J S, WANG W J, SHANGGUAN Y M, et al. Thermomechanical modelling and strength assessment of C/C-SiC composite brake disc[J]. Applied Composite Materials, 2023, 30(5): 1547-1568. [38] 李专, 肖鹏, 熊翔, 等. C/C-SiC复合材料的导热性能及其影响因素[J]. 中南大学学报(自然科学版), 2013, 44(1): 40-45.LI Zhuan, XIAO Peng, XIONG Xiang, et al. Thermal conductivity of C/C-SiC composites and its influence factors[J]. Journal of Central South University (Science and Technology), 2013, 44(1): 40-45. [39] 李杰, 陶龙, 顾佳玲, 等. 车辆通风式制动盘内部通道对流换热研究综述[J]. 交通运输工程学报, 2022, 22(2): 19-40. doi: 10.19818/j.cnki.1671-1637.2022.02.002LI Jie, TAO Long, GU Jia-ling, et al. Review on convective heat transfer in internal channel of ventilated brake disc of vehicle[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 19-40. doi: 10.19818/j.cnki.1671-1637.2022.02.002 [40] 李杰, 王莉, 王晓燕, 等. 延缓高速列车制动盘热裂纹扩展的机理和关键技术综述[J]. 交通运输工程学报, 2024, 24(6): 26-42. doi: 10.19818/j.cnki.1671-1637.2024.06.002LI Jie, WANG Li, WANG Xiao-yan, et al. Review on mechanism and key technologies for delaying thermal crack propagation of high-speed train brake discs[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 26-42. doi: 10.19818/j.cnki.1671-1637.2024.06.002 [41] 邓小军, 董天韵, 周伟. 高速列车设备舱底板的辐射传热特性[J]. 中南大学学报(自然科学版), 2016, 47(5): 1805-1811.DENG Xiao-jun, DONG Tian-yun, ZHOU Wei. Radiant heat transfer of high speed train equipment cabin bottom plate[J]. Journal of Central South University (Science and Technology), 2016, 47(5): 1805-1811. [42] MCPHEE A D, JOHNSON D A. Experimental heat transfer and flow analysis of a vented brake rotor[J]. International Journal of Thermal Sciences, 2008, 47(4): 458-467. [43] GARCÍA-LEÓN R A, GUERRERO-GÓMEZ G, AFANADOR -GARCÍA N. Experimental analysis of the heat transfer generated during the operation of an automotive disc brake[J]. Australian Journal of Mechanical Engineering, 2023, 21(4): 1247-1258. [44] ZHENG S Z, DING J X, ZUO J Y. Research on heat dissipation of brake disc in the semi-enclosed space under high-speed train based on fluid-solid-thermal coupling method[J]. Case Studies in Thermal Engineering, 2024, 56: 104295. -
下载: