留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于断裂力学的钢-UHPC栓钉焊缝疲劳性能分析与寿命预测

王达 刘经安 石佳林 谭本坤

王达, 刘经安, 石佳林, 谭本坤. 基于断裂力学的钢-UHPC栓钉焊缝疲劳性能分析与寿命预测[J]. 交通运输工程学报, 2025, 25(5): 220-233. doi: 10.19818/j.cnki.1671-1637.2025.05.015
引用本文: 王达, 刘经安, 石佳林, 谭本坤. 基于断裂力学的钢-UHPC栓钉焊缝疲劳性能分析与寿命预测[J]. 交通运输工程学报, 2025, 25(5): 220-233. doi: 10.19818/j.cnki.1671-1637.2025.05.015
WANG Da, LIU Jing-an, SHI Jia-lin, TAN Ben-kun. Fatigue performance analysis and life prediction of steel-UHPC stud weld based on fracture mechanics[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 220-233. doi: 10.19818/j.cnki.1671-1637.2025.05.015
Citation: WANG Da, LIU Jing-an, SHI Jia-lin, TAN Ben-kun. Fatigue performance analysis and life prediction of steel-UHPC stud weld based on fracture mechanics[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 220-233. doi: 10.19818/j.cnki.1671-1637.2025.05.015

基于断裂力学的钢-UHPC栓钉焊缝疲劳性能分析与寿命预测

doi: 10.19818/j.cnki.1671-1637.2025.05.015
基金项目: 

国家自然科学基金项目 52278235

国家自然科学基金项目 52508190

湖南省交通运输厅科技创新计划项目 202309

中南林业科技大学创新项目 202403

湖南省教育厅科学研究项目 24C0321

详细信息
    作者简介:

    王达(1980-), 男, 湖南新邵人, 中南林业科技大学教授, 工学博士, 从事大跨度桥梁结构理论、钢-混组合结构、桥梁检测与评定、大跨度桥梁施工控制研究

  • 中图分类号: U441

Fatigue performance analysis and life prediction of steel-UHPC stud weld based on fracture mechanics

Funds: 

National Natural Science Foundation of China 52278235

National Natural Science Foundation of China 52508190

Transportation Technology Project of Hunan Province 202309

Innovation Project of Central South University of Forestry and Technology 202403

Scientific Research Foundation of Hunan Provincial Education Department 24C0321

More Information
Article Text (Baidu Translation)
  • 摘要: 为探究焊缝尺寸对钢-UHPC组合结构栓钉连接件疲劳寿命及破坏模式的影响, 基于ABAQUS软件建立了推出试件的1/4对称有限元模型;针对13、16、19 mm三种栓钉直径的推出试件, 系统分析了焊缝参数(焊缝直径、焊缝高度)与初始疲劳裂纹深度对疲劳性能的影响机理;通过试验数据验证了有限元模型可靠性, 提出了一种融合焊缝尺寸的疲劳寿命预测方法。分析结果表明:路径1上的SWT参数与焊缝直径负相关, 临界平面集中于栓钉焊缝中部;裂纹萌生寿命在路径1和路径3随焊缝直径的增大而延长, 在路径2上则呈相反趋势, 且路径1的裂纹萌生寿命显著低于路径2和路径3, 表明裂纹优先萌生于路径1;栓钉总疲劳寿命随焊缝直径的减小呈先增后减趋势, 当13、16、19 mm栓钉的焊缝直径与栓钉直径的比值分别降为1.15、1.19、1.16时, 破坏模式由路径2向路径1转变, 此时栓钉总疲劳寿命达到峰值, 对应栓钉的最优焊缝直径/栓钉直径组合;路径1的SWT参数与焊缝高度正相关, 而裂纹萌生寿命在路径1随焊缝高度增加而缩短, 在路径2和路径3则延长;当焊缝高度降低时, 裂纹萌生位置由路径1迁移至路径2, 且在低荷载幅值下栓钉的破坏模式同步转变;栓钉总疲劳寿命随焊缝高度增加呈单调递增趋势;初始疲劳裂纹深度的增大导致栓钉总疲劳寿命显著减少。提出的疲劳寿命预测模型量化了焊缝尺寸对疲劳性能的耦合影响, 可为钢-UHPC组合结构中栓钉连接件的优化设计与寿命评估提供理论依据。

     

  • 图  1  推出试件构造(单位:mm)

    Figure  1.  Construction of pushing specimen (unit: mm)

    图  2  推出试件精细化有限元模型

    Figure  2.  Refined FE model of pushing specimen

    图  3  UHPC应力-应变曲线

    Figure  3.  Stress-strain curves of UHPC

    图  4  边界条件和相互作用

    Figure  4.  Boundary conditions and interactions

    图  5  栓钉荷载-滑移曲线有限元与试验对比

    Figure  5.  Comparison of FE and experimental results for load-slip curve of studs

    图  6  疲劳裂纹扩展过程

    Figure  6.  Process of fatigue crack growth

    图  7  栓钉构造细节

    Figure  7.  Stud construction details

    图  8  栓钉在最大疲劳荷载作用下的最大主应力

    Figure  8.  Maximum principle stress of stud at the maximum fatigue load

    图  9  转换坐标系平面

    Figure  9.  Plane after coordinate system transformation

    图  10  不同θ和$\phi$下的SWT参数

    Figure  10.  SWT parameters at different θ and$\phi$SWT parameters at different θ and $\phi$

    图  11  临界区域SWT参数分布

    Figure  11.  SWT parameter distribution in the critical region

    图  12  疲劳寿命计算值与试验结果的比较

    Figure  12.  Comparison between calculated fatigue lives and experimental results

    图  13  不同d1条件下13 mm栓钉的SWT

    Figure  13.  SWT of 13 mm studs under different d1 conditions

    图  14  不同d1条件下13 mm栓钉的Ninit

    Figure  14.  Ninit of 13 mm studs under different d1 conditions

    图  15  不同d1条件下栓钉的Nf

    Figure  15.  Nf of studs under different d1 conditions

    图  16  不同h条件下13 mm栓钉的SWT参数

    Figure  16.  SWT parameters of 13 mm studs under different h conditions

    图  17  不同h条件下13 mm栓钉的Ninit

    Figure  17.  Ninit of 13 mm studs under different h conditions

    图  18  不同h条件下13、16、19 mm栓钉的Nf

    Figure  18.  Nf of 13、16、19 mm studs under different h conditions

    图  19  不同h条件下栓钉的Nf

    Figure  19.  Nf of studs under different h conditions

    图  20  不同a0条件下栓钉的Nf

    Figure  20.  Nf of studs under different a0 conditions

    图  21  疲劳寿命预测公式S-N曲线

    Figure  21.  S-N curves of fatigue life prediction formula

    表  1  考虑钢材累计损伤的疲劳寿命计算结果

    Table  1.   Calculation results of fatigue life considering cumulative damage in steel materials

    试件编号 ΔF/kN Ninit/次 Nprop/次 Nf1/次 Nf2/次 lg(Nf1)/lg(Nf2)
    cd-1 310 2 693 44 211 46 904 46 903 1
    cd-2 253 23 600 118 454 142 054 142 115 1
    cd-3 279 8 259 77 667 85 926 85 924 1
    下载: 导出CSV

    表  2  栓钉抗剪承载力试验与有限元计算结果对比

    Table  2.   Comparison between experimental and finite element analysis results for shear capacity of studs

    试件编号 QE1 /kN QE2 /kN QF/kN QF/QE2
    PS-S13-1 673 84 81 0.96
    PS-S13-2 656 82 0.99
    均值 665 83 0.98
    PS-S19-1 1 235 154 152 0.99
    PS-S19-1 1 189 149 1.02
    均值 1 212 152 1.01
    STA-1 488 61 58 0.95
    STA-2 457 57 1.01
    STA-3 498 62 0.94
    均值 481 60 0.97
    下载: 导出CSV

    表  3  疲劳寿命计算结果

    Table  3.   Calculated results of fatigue lives

    编号 Fmax/kN Fmin/kN ΔF/kN Δτ/MPa Ne/次 Ninit/次 Nprop/次 Nf/次 lg(Ne)/lg(Nf)
    PF-S13-2 345 35 310 137 200 000 84 955 205 955 289 0.89
    PF-S13-3 281 28 253 112 1 650 000 323 1 807 160 1 807 483 0.99
    PF-S13-4 310 31 279 123 550 000 175 1 331 279 1 331 454 0.94
    PF-S19-2 674 67 607 143 55 000 29 910 181 910 210 0.80
    PF-S19-3 530 53 477 113 680 000 233 1 926 802 1 927 035 0.93
    PF-S19-4 501 50 451 106 2 570 000 345 2 290 712 2 291 057 1.01
    下载: 导出CSV

    表  4  不同因素和水平组合下栓钉疲劳寿命正交试验结果

    Table  4.   Orthogonal test results of stud fatigue life under different combinations of factors and levels

    序号 栓钉抗拉强度/MPa UHPC抗压强度/MPa UHPC弹性模量/GPa Nf/次
    1 412.1 134.9 45.9 25 688
    2 412.1 149.8 50.9 26 628
    3 412.1 164.7 55.9 28 233
    4 457.8 134.9 50.9 46 699
    5 457.8 149.8 55.9 48 214
    6 457.8 164.7 45.9 46 023
    7 503.5 134.9 55.9 59 100
    8 503.5 149.8 45.9 57 291
    9 503.5 164.7 50.9 58 368
    下载: 导出CSV

    表  5  Nf正交试验结果极差分析

    Table  5.   Range analysis of Nf of orthogonal test results

    参数 K1j/次 K2j/次 K3j/次 Wj/次
    栓钉抗拉强度 26 850 46 979 58 253 31 403
    UHPC抗压强度 43 829 44 045 44 208 379
    UHPC弹性模量 43 001 43 899 45 183 2 182
    下载: 导出CSV
  • [1] 樊健生, 聂建国. 负弯矩作用下考虑滑移效应的组合梁承载力分析[J]. 工程力学, 2005, 22(3): 177-182.

    FAN Jian-sheng, NIE Jian-guo. Effects of slips on load-carrying capacity of composite beams under negative bending[J]. Engineering Mechanics, 2005, 22(3): 177-182.
    [2] 刘君平, 徐帅, 陈宝春. 钢-UHPC组合梁与钢-普通混凝土组合梁抗弯性能对比试验研究[J]. 工程力学, 2018, 35(11): 92-98, 145.

    LIU Jun-ping, XU Shuai, CHEN Bao-chun. Experimental study on flexural behaviors of steel-UHPC composite girder and steel-conventional concrete composite girder[J]. Engineering Mechanics, 2018, 35(11): 92-98, 145.
    [3] 晏班夫, 刘千, 王凯, 等. 带钢底板UHPC梁抗剪承载力计算方法[J]. 交通运输工程学报, 2024, 24(3): 82-93. https://transport.chd.edu.cn/article/id/201705002

    YAN Ban-fu, LIU Qian, WANG Kai, et al. Shear bearing capacity calculation method for UHPC beams with steel bottom plate[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 82-93. https://transport.chd.edu.cn/article/id/201705002
    [4] 武芳文, 左剑, 樊州, 等. 钢-ECC/UHPC组合梁负弯矩区力学性能研究[J]. 交通运输工程学报, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014

    WU Fang-wen, ZUO Jian, FAN Zhou, et al. Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014
    [5] 陈康明, 黄卿维, 吴庆雄, 等. 采用预制-现浇UHPC板的钢桥面铺装受力性能研究[J]. 中国公路学报, 2022, 35(12): 130-143.

    CHEN Kang-ming, HUANG Qing-wei, WU Qing-xiong, et al. Study on mechanical performance of steel bridge deck pavement with prefabricated and cast-in-situ UHPC slab[J]. China Journal of Highway and Transport, 2022, 35(12): 130-143.
    [6] 石广玉, 李广耀. 基于断裂力学的钢-UHPC组合结构中栓钉的疲劳寿命评估[J]. 长安大学学报(自然科学版), 2021, 41(2): 102-113.

    SHI Guang-yu, LI Guang-yao. Evaluation of fatigue life of stud in steel-UHPC composite structure based on fracture mechanics[J]. Journal of Chang'an University (Natural Science Edition), 2021, 41(2): 102-113.
    [7] 罗军, 邵旭东, 曹君辉, 等. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920, 930.

    LUO Jun, SHAO Xu-dong, CAO Jun-hui, et al. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(5): 909-920, 930.
    [8] 邓森文, 白奇, 高山, 等. 不同形式螺栓抗剪键的受剪性能对比分析[J]. 建筑结构学报, 2021, 42(增2): 435-443.

    DENG Sen-wen, BAI Qi, GAO Shan, et al. Comparative analysis of shear performance of different types of bolt shear keys[J]. Journal of Building Structures, 2021, 42(S2): 435-443.
    [9] 蔺钊飞, 刘玉擎, 贺君. 焊钉连接件抗剪刚度计算方法研究[J]. 工程力学, 2014, 31(7): 85-90.

    LIN Zhao-fei, LIU Yu-qing, HE Jun. Research on calculation method of shear stiffness for headed stud connectors[J]. Engineering Mechanics, 2014, 31(7): 85-90.
    [10] 刘永健, 姜磊, 王康宁. 焊接管节点疲劳研究综述[J]. 建筑科学与工程学报, 2017, 34(5): 1-20.

    LIU Yong-jian, JIANG Lei, WANG Kang-ning. Review of fatigue behavior in welded tubular joints[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 1-20.
    [11] 刘诚, 樊健生, 聂建国, 等. 钢-超高性能混凝土组合桥面系中栓钉连接件的疲劳性能研究[J]. 中国公路学报, 2017, 30(3): 139-146.

    LIU Cheng, FAN Jian-sheng, NIE Jian-guo, et al. Fatigue performance research of headed studs in steel and ultra-high performance concrete composite deck[J]. China Journal of Highway and Transport, 2017, 30(3): 139-146.
    [12] ZHANG X H, YANG X Y, LI C, et al. Friction affected fatigue behavior of steel-UHPC composite structures and the fatigue crack growth in studs[J]. International Journal of Fatigue, 2023, 177: 107949. doi: 10.1016/j.ijfatigue.2023.107949
    [13] CAO J H, SHAO X D, DENG L, et al. Static and fatigue behavior of short-headed studs embedded in a thin ultrahigh-performance concrete layer[J]. Journal of Bridge Engineering, 2017, 22(5): 04017005. doi: 10.1061/(ASCE)BE.1943-5592.0001031
    [14] 史占崇, 苏庆田, 陈亮. 钢-UHPC组合桥面板中焊接栓钉的疲劳性能及设计布置方法[J]. 中国公路学报, 2023, 36(6): 107-122.

    SHI Zhan-chong, SU Qing-tian, CHEN Liang. Fatigue behavior and design layout method of welded stud connectors in steel-UHPC composite bridge deck[J]. China Journal of Highway and Transport, 2023, 36(6): 107-122.
    [15] 刘小光, 朱伟庆, 周波, 等. 厚板T型接头焊接残余应力的形成机制与演变过程[J]. 交通运输工程学报, 2025, 25(4): 179-189. doi: 10.19818/j.cnki.1671-1637.2025.04.013

    LIU Xiao-guang, ZHU Wei-qing, ZHOU Bo, et al. Formation mechanism and evolution of welding residual stress in thick plate T-joint[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 179-189. doi: 10.19818/j.cnki.1671-1637.2025.04.013
    [16] 高亚杰. 低温环境钢-混结构栓钉连接件焊接残余应力及疲劳性能研究[D]. 成都: 西南交通大学, 2023.

    GAO Ya-jie. Study on welding residual stress and fatigue performance of steel-concrete stud connectors in low temperature environment[D]. Chengdu: Southwest Jiaotong University, 2023.
    [17] 李聪, 陈宝春, 胡文旭, 等. 钢-UHPC组合板栓钉抗剪承载力、滑移与刚度计算[J]. 工程力学, 2023, 40(6): 110-121.

    LI Cong, CHEN Bao-chun, HU Wen-xu, et al. Calculation of shear bearing capacity, slip and stiffness of headed studs in steel-UHPC composite slab[J]. Engineering Mechanics, 2023, 40(6): 110-121.
    [18] 王潇碧, 宋瑞年, 占玉林, 等. 焊缝形态对栓钉抗剪承载力的影响[J]. 工业建筑, 2020, 50(12): 144-149, 185.

    WANG Xiao-bi, SONG Rui-nian, ZHAN Yu-lin, et al. Effect of weld shape on shear bearing capacity of stud[J]. Industrial Construction, 2020, 50(12): 144-149, 185.
    [19] 陈路华. Q690高强钢-UHPC组合梁静力与疲劳性能及其设计方法研究[D]. 上海: 同济大学, 2022.

    CHEN Lu-hua. Study on static and fatigue performance and design method of Q690 high strength steel-UHPC composite beam[D]. Shanghai: Tongji University, 2022.
    [20] 侯川川, 王蕊, 韩林海. 低速横向冲击下钢管混凝土构件的力学性能研究[J]. 工程力学, 2012, 29(增1): 107-110.

    HOU Chuan-chuan, WANG Rui, HAN Lin-hai. Performance of concrete-filled steel tubular (CFST) members under low velocity transverse impact[J]. Engineering Mechanics, 2012, 29(S1): 107-110.
    [21] 杨剑, 方志. 超高性能混凝土单轴受压应力-应变关系研究[J]. 混凝土, 2008(7): 11-15.

    YANG Jian, FANG Zhi. Research on stress-strain relation of ultra high performance concrete[J]. Concrete, 2008(7): 11-15.
    [22] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50-58.

    ZHANG Zhe, SHAO Xu-dong, LI Wen-guang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8): 50-58.
    [23] XU X Q, LIU Y Q, HE J. Study on mechanical behavior of rubber-sleeved studs for steel and concrete composite structures[J]. Construction and Building Materials, 2014, 53: 533-546. doi: 10.1016/j.conbuildmat.2013.12.011
    [24] 曹君辉. 钢-薄层超高性能混凝土轻型组合桥面结构基本性能研究[D]. 长沙: 湖南大学, 2016.

    CAO Jun-hui. Study on basic performance of steel-thin-layer ultra-high performance concrete light composite bridge deck structure[D]. Changsha: Hunan University, 2016.
    [25] XU X Q, ZHOU X H, LIU Y Q. Fatigue life prediction of rubber-sleeved stud shear connectors under shear load based on finite element simulation[J]. Engineering Structures, 2021, 227: 111449. doi: 10.1016/j.engstruct.2020.111449
    [26] 王宇航, 聂建国. 基于断裂力学的组合梁栓钉疲劳性能[J]. 清华大学学报(自然科学版), 2009, 49(9): 35-38.

    WANG Yu-hang, NIE Jian-guo. Fatigue behavior of studs in a composite beam based on fracture mechanics[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(9): 35-38.
    [27] 聂建国, 王宇航. 钢-混凝土组合梁疲劳性能研究综述[J]. 工程力学, 2012, 29(6): 1-11.

    NIE Jian-guo, WANG Yu-hang. Research status on fatigue behavior of steel-concrete composite beams[J]. Engineering Mechanics, 2012, 29(6): 1-11.
    [28] 侯文崎. 铁路钢-混凝土组合桥及剪力连接件的研究[D]. 长沙: 中南大学, 2010.

    HOU Wen-qi. Research on railway steel-concrete composite bridge and shear connectors[D]. Changsha: Central South University, 2010.
    [29] 徐海鹰, 唐细彪. 轻骨料混凝土栓钉连接件疲劳性能研究[J]. 铁道工程学报, 2013, 30(5): 97-101.

    XU Hai-ying, TANG Xi-biao. Research on the fatigue performance of lightweight aggregate concrete headed stud connectors[J]. Journal of Railway Engineering Society, 2013, 30(5): 97-101.
    [30] 刘益铭. 大纵肋正交异性钢—高性能混凝土组合桥面板疲劳失效机理研究[D]. 成都: 西南交通大学, 2019.

    LIU Yi-ming. Study on fatigue failure mechanism of orthotropic steel-high performance concrete composite bridge deck with large longitudinal ribs[D]. Chengdu: Southwest Jiaotong University, 2019.
    [31] 李嘉, 杨波, 邵旭东, 等. 钢桥面-薄层CRRPC组合结构栓钉连接件抗剪疲劳性能研究[J]. 土木工程学报, 2016, 49(6): 67-75.

    LI Jia, YANG Bo, SHAO Xu-dong, et al. Research on shear fatigue of studs for composite deck system of steel slab and thin CRRPC layer[J]. China Civil Engineering Journal, 2016, 49(6): 67-75.
    [32] XU C, SU Q T, MASUYA H. Static and fatigue behavior of the stud shear connector in lightweight concrete[J]. International Journal of Steel Structures, 2018, 18(2): 569-581. doi: 10.1007/s13296-018-0014-1
    [33] LEE P, SHIM C, CHANG S. Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges[J]. Journal of Constructional Steel Research, 2005, 61(9): 1270-1285. doi: 10.1016/j.jcsr.2005.01.007
    [34] 曹鸿猷, 陈云峰, 李俊, 等. 预制小箱梁UHPC-NC组合负弯矩区抗弯承载能力[J]. 长安大学学报(自然科学版), 2024, 44(6): 59-71.

    CAO Hong-you, CHEN Yun-feng, LI Jun, et al. Bending-bearing capacity of UHPC-NC composite negative bending moment region of small box girder[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(6): 59-71.
  • 加载中
图(21) / 表(5)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  26
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-10
  • 录用日期:  2025-08-25
  • 修回日期:  2025-07-16
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回