Seismic performance of ultra-high performance concrete-filled FRP tube composite columns reinforced with steel-FRP composite bars
-
摘要: 为解决结构锈蚀并减小结构残余变形,提出了一种新型的钢-纤维增强复合材料复合筋(SFCB)增强FRP管超高性能混凝土(UHPC-FFT)组合柱,通过拟静力试验和有限元模型研究其抗震性能;探讨了纵筋类型、轴压比、FRP管厚度、管材类型、混凝土类型和配筋率对UHPC-FFT组合柱抗震性能的影响;基于已验证的纤维模型,分析了SFCB的截面含钢率、内芯钢筋屈服强度、外包FRP弹性模量和极限抗拉强度对组合柱抗震性能的影响。研究结果表明:与带钢筋和FRP筋的UHPC-FFT组合柱相比,带SFCB的组合柱的滞回曲线最饱满,承载力和耗能能力最大;当轴压比由0.15提高至0.25时,组合柱的初始刚度和承载力随之提高,但降低了延性和耗能,并增大了残余变形;由于FRP管对UHPC的环向约束能力有限,将FRP管厚度从4 mm增加至6 mm对组合柱的抗震性能影响较为有限;使用抗压强度高、韧性好的UHPC和增大配筋率均可有效提高组合柱的抗震性能;提高内芯钢筋强度可以提高组合柱的承载力、抗变形能力,且不影响延性、初始刚度和刚度退化速率;增大SFCB的外包FRP弹性模量能够提高组合柱的抗震性能,但也会导致组合柱由于外包FRP断裂而过早发生破坏,建议选用弹性模量为55 GPa的FRP。
-
关键词:
- 桥梁工程 /
- 抗震性能 /
- 拟静力试验 /
- 钢-FRP复合筋 /
- FRP管超高性能混凝土组合柱
Abstract: A novel steel-fiber reinforced polymer composite bar (SFCB) to reinforce ultra-high performance concrete-filled FRP tubes (UHPC-FFT) was proposed to address structural corrosion and minimize residual deformation. The seismic performance of these columns was investigated through quasi-static tests and finite element modeling. Parameters including longitudinal reinforcement type, axial load ratio, FRP tube thickness, tube material type, concrete type, and reinforcement ratio were examined for their effects on seismic behavior. Furthermore, based on a validated fiber model, the influences of SFCB cross-sectional steel ratio, core steel bar yield strength, external FRP elastic modulus, and ultimate tensile strength on the seismic performance were analyzed. The results indicate that UHPC-FFT columns reinforced with SFCBs exhibit fuller hysteretic loops, higher load-carrying capacity, and superior energy dissipation compared to those with conventional steel or FRP bars. Increasing axial load ratio from 0.15 to 0.25 enhances the initial stiffness and load-bearing capacity of the composite columns but reduces ductility and energy dissipation while increasing residual deformation. Increasing the FRP tube thickness from 4 to 6 mm shows limited improvement in seismic performance due to the limited circumferential confinement capacity of FRP tubes for UHPC. UHPC with high compressive strength and good toughness, as well as an increased reinforcement ratio, effectively enhances the seismic performance of the composite columns. Increasing the strength of the inner steel bar improves both bearing capacity and deformation of the composite columns without compromising ductility, initial stiffness, or stiffness degradation rate. Although a higher elastic modulus of the external FRP in SFCBs can improve the seismic performance of the composite columns, it may also lead to premature failure caused by FRP fracture. An FRP with an elastic modulus of 55 GPa is therefore recommended. -
表 1 试件设计参数
Table 1. Design parameters of specimens
编号 混凝土 管材 纵筋 tf/mm ρs/% nc S1 UHPC FRP 6ϕS12 4.0 2.6 0.15 S2 UHPC FRP 6ϕB12 4.0 2.6 0.15 S3 UHPC FRP 6ϕH12 4.0 2.6 0.15 S4 UHPC FRP 6ϕS12 4.0 2.6 0.25 S5 UHPC FRP 6ϕS12 6.0 2.6 0.15 S6 UHPC Q235钢 6ϕS12 4.0 2.6 0.15 S7 UHPC FRP 8ϕS12 4.0 3.4 0.15 S8 C40 FRP 6ϕS12 4.0 2.6 0.15 表 2 NSC与UHPC的质量配合比
Table 2. Mass ratio of NSC and UHPC
混凝土类型 水胶比 水泥 砂 石子 矿粉 硅灰 粉煤灰 钢纤维体积率/% 减水剂/% NSC 0.42 1.00 1.64 2.67 1.05 UHPC 0.19 0.55 1.20 0.10 0.25 0.10 1.00 1.50 表 3 纵筋详细参数
Table 3. Detailed parameters of longitudinal reinforcement
筋材类型 d/mm ds/mm df/mm dr/mm sr/mm as 钢筋 12 12 0 1.2 8.0 1.00 SFCB 12 6 3 1.5 10.0 0.25 BFRP筋 12 0 6 1.5 10.0 0.00 表 4 特征荷载、位移和延性
Table 4. Characteristic load, displacement and ductility
编号 Py/kN Δy/mm Pp/kN Δp/mm Pu/kN Δu/mm μΔ S1 9.76 15.0 11.40 36.1 9.69 76.0 5.06 S2 9.34 17.3 10.10 35.0 8.56 89.7 5.19 S3 11.80 15.0 14.20 22.0 12.10 50.4 3.36 S4 11.30 18.4 11.90 25.5 10.20 41.3 2.25 S5 10.60 14.8 11.70 31.5 10.00 73.8 5.05 S6 22.80 16.3 27.00 31.8 23.00 106.0 6.52 S7 12.00 21.0 13.10 52.5 11.10 107.0 5.03 S8 7.65 15.2 8.91 24.0 7.57 53.5 3.53 -
[1] 刘永健, 刘江, 周绪红, 等. 桥梁长寿命设计理论综述[J]. 交通运输工程学报, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001LIU Yong-jian, LIU Jiang, ZHOU Xu-hong, et al. Review on long-life design theory for bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001 [2] AHMED A, GUO S C, ZHANG Z H, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete[J]. Construction and Building Materials, 2020, 256: 119484. doi: 10.1016/j.conbuildmat.2020.119484 [3] 王兴国, 朱坤佳, 郑宇宙, 等. 表层嵌入混合FRP筋的连续梁弯曲性能与影响因素[J]. 交通运输工程学报, 2015, 15(2): 32-41. doi: 10.19818/j.cnki.1671-1637.2015.02.004WANG Xing-guo, ZHU Kun-jia, ZHENG Yu-zhou, et al. Flexural properties and influence factors of continuous RC beam strengthened with near-surface mounted mixing FRP tendons[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 32-41. doi: 10.19818/j.cnki.1671-1637.2015.02.004 [4] DONG Z Q, HAN T H, ZHANG B, et al. A review of the research and application progress of new types of concrete-filled FRP tubular members[J]. Construction and Building Materials, 2021, 312: 125353. doi: 10.1016/j.conbuildmat.2021.125353 [5] TOUTANJI H, HAN M, GILBERT J, et al. Behavior of large-scale rectangular columns confined with FRP composites[J]. Journal of Composites for Construction, 2010, 14(1): 62-71. doi: 10.1061/(ASCE)CC.1943-5614.0000051 [6] TENG J G, YU T, WONG Y L, et al. Hybrid FRP-concrete-steel tubular columns: Concept and behavior[J]. Construction and Building Materials, 2007, 21(4): 846-854. doi: 10.1016/j.conbuildmat.2006.06.017 [7] YU T, ZHANG B, TENG J G. Unified cyclic stress-strain model for normaland high strength concrete confined with FRP[J]. Engineering Structures, 2015, 102: 189-201. doi: 10.1016/j.engstruct.2015.08.014 [8] TOUTANJI H, HAN M, GILBERT J, et al. Behavior of large-scale rectangular columns confined with FRP composites[J]. Journal of Composites for Construction, 2010, 14(1): 62-71. doi: 10.1061/(ASCE)CC.1943-5614.0000051 [9] YOUM K S, CHO J Y, LEE Y H, et al. Seismic performance of modular columns made of concrete filled FRP tubes[J]. Engineering Structures, 2013, 57: 37-50. doi: 10.1016/j.engstruct.2013.09.001 [10] YOUSSF O, ELGAWADY M A, MILLS J E. Displacement and plastic hinge length of FRP-confined circular reinforced concrete columns[J]. Engineering Structures, 2015, 101: 465-476. doi: 10.1016/j.engstruct.2015.07.026 [11] 李红健, 陈林聪, 宁西占. BFRP管混凝土柱抗震性能研究[J]. 振动与冲击, 2022, 41(10): 106-114, 161.LI Hong-jian, CHEN Lin-cong, NING Xi-zhan. A study on seismic behaviour of concrete-filled BFRP tube columns[J]. Journal of Vibration and Shock, 2022, 41(10): 106-114, 161. [12] FANG S, LIU F, XIONG Z, et al. Seismic performance of recycled aggregate concrete-filled glass fibre-reinforced polymer-steel composite tube columns[J]. Construction and Building Materials, 2019, 225: 997-1010. doi: 10.1016/j.conbuildmat.2019.07.238 [13] ZHANG B, ZHOU C, WANG C C, et al. Seismic behavior and modeling of elliptical concrete-filled FRP tubes with longitudinal steel rebars under lateral cyclic load and vertical constant load[J]. Thin-walled Structures, 2023, 188: 110815. doi: 10.1016/j.tws.2023.110815 [14] ZHANG B, PENG Y T, ZHANG S M, et al. Elliptical concrete-filled FRP tubes with an embedded H-shaped steel under axial compression and cyclic lateral loading: Experimental study and modelling[J]. Composite Structures, 2024, 330: 117839. doi: 10.1016/j.compstruct.2023.117839 [15] 马宏旺, 吕西林. 建筑结构基于性能抗震设计的几个问题[J]. 同济大学学报(自然科学版), 2002, 30(12): 1429-1434.MA Hong-wang, LÜ Xi-lin. Some problems about performance-based seismic design[J]. Journal of Tongji University (Natural Science), 2002, 30(12): 1429-1434. [16] 吴刚, 罗云标, 吴智深, 等. 钢-连续纤维复合筋(SFCB)力学性能试验研究与理论分析[J]. 土木工程学报, 2010, 43(3): 53-61.WU Gang, LUO Yun-biao, WU Zhi-shen, et al. Experimental and theoretical studies on the mechanical properties of steel-FRP composite bars (SFCB)[J]. China Civil Engineering Journal, 2010, 43(3): 53-61. [17] WU G, SUN Z Y, WU Z S, et al. Mechanical properties of steel-FRP composite bars (SFCBs) and performance of SFCB reinforced concrete structures[J]. Advances in Structural Engineering, 2012, 15(4): 625-635. doi: 10.1260/1369-4332.15.4.625 [18] 孙泽阳, 吴刚, 吴智深, 等. 钢-连续纤维复合筋增强混凝土柱抗震性能试验研究[J]. 土木工程学报, 2011, 44(11): 24-33.SUN Ze-yang, WU Gang, WU Zhi-shen, et al. Experimental study on seismic performance of concrete columns reinforced by steel-FRP composite bars[J]. China Civil Engineering Journal, 2011, 44(11): 24-33. [19] 孙泽阳, 吴刚, 吴智深, 等. 钢-连续纤维复合筋增强混凝土柱抗震性能数值分析[J]. 土木工程学报, 2012, 45(5): 93-103.SUN Ze-yang, WU Gang, WU Zhi-shen, et al. Numerical study on seismic performance of concrete columns reinforced by steel-FRP composite bars[J]. China Civil Engineering Journal, 2012, 45(5): 93-103. [20] AZMEE N M, SHAFIQ N. Ultra-high performance concrete: From fundamental to applications[J]. Case Studies in Construction Materials, 2018, 9: e00197. doi: 10.1016/j.cscm.2018.e00197 [21] DU J, MENG W N, KHAYAT K H, et al. New development of ultra-high-performance concrete (UHPC)[J]. Composites Part B: Engineering, 2021, 224: 109220. doi: 10.1016/j.compositesb.2021.109220 [22] 梅葵花, 亢文波, 刘洋, 等. 氯盐环境下预损伤UHPC-HPC组合梁抗弯性能[J]. 交通运输工程学报, 2024, 24(1): 117-130. doi: 10.19818/j.cnki.1671-1637.2024.01.007MEI Kui-hua, KANG Wen-bo, LIU Yang, et al. Flexural behavior of pre-damaged UHPC-HPC composite beams in chloride corrosion environment[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 117-130. doi: 10.19818/j.cnki.1671-1637.2024.01.007 [23] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511. doi: 10.1016/0008-8846(95)00144-2 [24] ZHANG B, GAO Y H, PENG Y T, et al. Seismic performance of circular concrete-filled FRP tubes consisting of H-steel with shear studs: Experimental study and numerical modelling[J]. Thin-walled Structures, 2023, 193: 111225. doi: 10.1016/j.tws.2023.111225 [25] SU C, WANG X, DING L N, et al. Seismic degradation behavior of steel-FRP composite bar reinforced concrete beams in marine environment based on experimental and numerical investigation[J]. Composite Structures, 2023, 313: 116949. doi: 10.1016/j.compstruct.2023.116949 [26] PARK R. State of the art report ductility evaluation from laboratory and analytical testing[C]//WCEE. Proceedings of Ninth World Conference on Earthquake Engineering. Kyoto: WCEE, 1988: 605-616. [27] TENG J G, LAM L, LIN G, et al. Numerical simulation of FRP-jacketed RC columns subjected to cyclic and seismic loading[J]. Journal of Composites for Construction, 2016, 20(1): 04015021. doi: 10.1061/(ASCE)CC.1943-5614.0000584 [28] LAM L, TENG J G. Stress-strain model for FRP-confined concrete under cyclic axial compression[J]. Engineering Structures, 2009, 31(2): 308-321. doi: 10.1016/j.engstruct.2008.08.014 [29] ZHAO J, SRITHARAN S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. ACI Structural Journal, 2007, 104(2): 133-141. [30] WU G, WU Z S, LUO Y B, et al. Mechanical properties of Steel-FRP composite bar under uniaxial and cyclic tensile loads[J]. Journal of Materials in Civil Engineering, 2010, 22(10): 1056-1066. doi: 10.1061/(ASCE)MT.1943-5533.0000110 -
下载: