Mechanical performance and stiffness calculation of integral abutment joints in Ⅰ-shaped composite girders
-
摘要: 为研究不同桩基类型对工字组合梁整体式桥台节点力学性能的影响规律,以钢筋混凝土(RC)桩、H型钢桩、超高性能混凝土(UHPC)桩3种桩基形式为变量,开展整体式桥台节点足尺模型试验,构建了实体有限元模型,对比分析了节点的受力特性、传力机制与破坏模式,基于力法原理提出了节点刚度计算方法。分析结果表明:采用不同桩基形式的节点试件在整体升温荷载下的纵向变形性能良好,节点破坏形式均是由于桩基破坏而造成节点整体破坏,栓钉均未弯曲或破坏,节点整体性能良好;在截面竖向承载力相同情况下,钢桩的剪切刚度和抗弯刚度最大,钢筋混凝土桩次之,UHPC桩最小;H型钢桩适应纵桥向变形能力和承载力最佳,UHPC桩次之,钢筋混凝土桩最低;桩顶和桥面板梁台界面这2个刚度突变位置是工字组合梁整体式桥台节点设计的关键;对比理论公式与有限元计算,得到温度作用下桥梁纵向变形误差小于2.7%,可用理论公式计算整体桥纵向变形;提出的不同桩基形式的节点刚度计算方法与试验结果误差均小于5%。研究成果为工字组合梁整体式桥台节点精细化设计提供理论支撑。Abstract: To investigate the influence law of different pile types on the mechanical performance of integral abutment joints in Ⅰ-shaped composite girders, reinforced concrete (RC) piles, H-shaped steel piles, and ultra-high-performance-concrete (UHPC) piles were used as variables to conduct full-scale model tests, develop finite element models, and analyze the mechanical characteristics, load-transfer mechanisms, and failure modes of the joints. A joint stiffness calculation method was proposed based on the principle of the force method. Analyse results show that all joint specimens with different pile types exhibit excellent longitudinal deformation performance under overall temperature rise loads. Failure forms of joints are caused by pile failure. The studs are not bent or damaged, and the overall performance of the joints is great. Under equivalent vertical bearing capacity conditions, steel piles demonstrate the highest shear and bending stiffness, followed by RC piles, while UHPC piles show the minimum values. H-shaped steel piles exhibit optimal longitudinal deformation adaptability and bearing capacity, followed by UHPC piles, with RC piles performing least favorably. Two stiffness mutation positions, including pile tops and beam-abutment interfaces, are identified as key points of the joint design of Ⅰ-shaped composite girders. By comparing the theoretical formula with the finite element results, the longitudinal deformation error of the bridge under temperature effects is less than 2.7%. verifying their reliability. The theoretical formula can be used to calculate the integral longitudinal deformation of the bridge. The proposed stiffness calculation method of different pile types achieves less than 5% deviation compared to experimental results. The research results provide theoretical support for the refined design of integral abutment joints in steel-concrete composite girders.
-
表 1 不同形式桩基参数对比
Table 1. Comparison of parameters of different pile types
试件序号 桩基类型 材料强度 截面尺寸/mm 1 RC桩 C30 直径为1 000 2 H型钢桩 Q345 高度为770,宽度为765,腹板厚度为16,翼缘厚度为16 3 UHPC桩 R130 高度为434,厚度为420,腹板厚度为100,翼缘厚度为100 表 2 温度作用下桥梁纵向变形
Table 2. Longitudinal deformation under temperature action
荷载作用 理论计算值/mm 有限元计算值/mm 误差/% 整体升温 8.42 8.66 2.7 整体降温 -1.30 -1.33 2.6 表 3 节点刚度对比
Table 3. Comparison of joint stiffness
桩型 剪切刚度/(105 kN·m-1) 剪切刚度与RC桩试件对比/% 抗弯刚度/(105 kN·m·rad-1) 抗弯刚度与RC桩试件对比/% RC桩 3.20 1.54 H型钢桩 3.54 10.63 1.60 3.90 UHPC桩 2.44 -23.75 1.19 -22.73 表 4 破坏模式对比
Table 4. Comparison of failure modes
部位 RC桩 H型钢桩 UHPC桩 桥面板 


桥台 


桩基 


表 5 纵向变形能力对比
Table 5. Comparison of longitudinal deformation capacity
桩型 破坏位移/mm 破坏位移与RC桩试件对比/% 极限荷载/kN 极限荷载与RC桩试件对比/% RC桩 35.2 925.1 H型钢桩 102.3 190.6 1 687.0 82.4 UHPC桩 66.9 90.1 1 058.0 14.4 表 6 节点抗弯刚度对比
Table 6. Comparison of joint bending stiffnesses
桩型 抗弯刚度/(kN·m·rad-1) 试验值/105 有限元/105 误差/% RC桩 1.54 1.46 5.1 H型钢桩 1.60 1.47 8.1 UHPC桩 1.19 1.14 4.2 -
[1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述[J]. 中国公路学报, 2024, 37(12): 1-160.Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2024[J]. China Journal of Highway and Transport, 2024, 37(12): 1-160. [2] 徐明, 刘鹏飞. 整体式桥台研究综述[J]. 工程力学, 2016, 33(4): 1-8.XU Ming, LIU Peng-fei. Research on integral bridge abutments[J]. Engineering Mechanics, 2016, 33(4): 1-8. [3] AZIZINAMINI A, POWER E H, MYERS G F, et al. Design guide for bridges for service life[M]. Washington DC: TRB Publications, 2014. [4] 陈宝春, 黄福云, 薛俊青, 等. 无伸缩缝桥梁研究综述[J]. 交通运输工程学报, 2022, 22(5): 1-40. doi: 10.19818/j.cnki.1671-1637.2022.05.001CHEN Bao-chun, HUANG Fu-yun, XUE Jun-qing, et al. Review on research of jointless bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 1-40. doi: 10.19818/j.cnki.1671-1637.2022.05.001 [5] ALSHAWABKEH Y M, ISSA M A. Maximum permissible safe length of integral abutment bridges supported by steel H-piles[J]. Structures, 2024, 62(3): 106-130. [6] ARSOY S, BARKER R, DUNCAN J M. Experimental and analytical investigations of piles and abutments of integral bridges[J]. Earth Planetary Science Letters, 2000, 331(4): 364-365. [7] DICLELI M, ALBHAISI S M. Effect of cyclic thermal loading on the performance of steel H-piles in integral bridges with stub-abutments[J]. Journal of Constructional Steel Research, 2004, 60(2): 161-182. doi: 10.1016/j.jcsr.2003.09.003 [8] AHN J H, YOON J H, KIM J H, et al. Evaluation on thebehavior of abutment-pile connection in integral abutment bridge[J]. Journal of Constructional Steel Research, 2011, 67(7): 1134-1148. doi: 10.1016/j.jcsr.2011.02.007 [9] AROCKIASAMY M, ARVAN P A. Behavior, performance, and evaluation of prestressed concrete/steel pipe/steel H-pile to pile cap connections[J]. Practice Periodical on Structural Design and Construction, 2022, 27(2): 03122001. doi: 10.1061/(ASCE)SC.1943-5576.0000671 [10] 黄福云, 桂奎, 易志宏, 等. 基于温度变形效应的整体式桥台-H型钢桩-土相互作用拟静力试验研究[J]. 铁道学报, 2023, 45(3): 109-118.HUANG Fu-yun, GUI Kui, YI Zhi-hong, et al. Study on interaction between integral abutment, H-shaped steel pile and soil under quasi-static test based on temperature deformation effect[J]. Journal of the China Railway Society, 2023, 45(3): 109-118. [11] 黄福云, 程俊峰, 薛俊青, 等. 带EPS的整体式桥台-桩-土相互作用拟静力试验[J]. 中国公路学报, 2019, 32(7): 77-89.HUANG Fu-yun, CHENG Jun-feng, XUE Jun-qing, et al. Experiment on abutment-pile-soil interaction with expanded polystyrenes in integral abutment jointless bridges[J]. China Journal of Highway and Transport, 2019, 32(7): 77-89. [12] 黄福云, 何凌峰, 单玉麟, 等. 整体式桥台-混凝土桩-土相互作用拟静力试验[J]. 岩土力学, 2021, 42(7): 1803-1814HUANG Fu-yun, HE Ling-feng, SHAN Yu-lin, et al. Experiment on interaction of soil-abutment-RC pile in integral abutment jointless bridges (IAJBs)[J]. Rock and Soil Mechanics, 2021, 42(7): 1803-1814. [13] 黄福云, 李岚, 何凌峰, 等. 整体式桥台-RC桩-土体系受力性能[J]. 哈尔滨工业大学学报, 2023, 55(3): 128-138.HUANG Fu-yun, LI-Lan, HE Ling-feng, et al. Mechanical behavior of abutment-RC pile-soil structure in integral abutment bridges[J]. Journal of Harbin Institute of Technology, 2023, 55(3): 128-138. [14] 彭大文, 陈朝慰, 洪锦祥. 整体式桥台桥梁的桥台结点受力性能研究[J]. 中国公路学报, 2005, 18(1): 46-50.PENG Da-wen, CHEN Chao-wei, HONG Jin-xiang. Study of loaded property of abutment node of integral abutment bridges[J]. China Journal of Highway and Transport, 2005, 18(1): 46-50. [15] 彭大文, 陈晓冬, 袁燕. 整体式桥台桥梁台后土压力的季节性变化研究[J]. 岩土工程学报, 2003, 25(2): 135-139.PENG Da-wen, CHEN Xiao-dong, YUAN Yan. Study on seasonal fluctuation of earth pressure behind the abutment[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 135-139. [16] 洪锦祥, 彭大文. 桩基础的整体式桥台桥梁受力性能研究[J]. 中国公路学报, 2002, 15(4): 43-48.HONG Jin-xiang, PENG Da-wen. Research on the loaded property of integral abutment bridges with flexible piles[J]. China Journal of Highway and Transport, 2002, 15(4): 43-48. [17] 金晓勤. 新型无缝桥梁研究与应用[D]. 湖南: 湖南大学, 2000.JIN Xiao-qin. Research and application of new seamless bridge[D]. Hunan: Hunan University, 2000. [18] LIANG C, LIU Y Q, YANG F. Flexural strengths of steel girder-concrete abutment connections incorporating the effect of perfobond connectors[J]. Engineering Structures, 2020, 214: 110611. doi: 10.1016/j.engstruct.2020.110611 [19] LIANG C, LIU Y Q, LIU Y Q. An orthogonal component method for steel girder-concrete abutment connections in integral abutment bridges[J]. Journal of Constructional Steel Research, 2021, 180: 106604. doi: 10.1016/j.jcsr.2021.106604 [20] LIANG C, LIU Y Q, ZHAO C J, et al. Experimental and numerical study on an innovative girder-abutment joint in composite bridges with integral abutments[J]. Construction and Building Materials, 2018, 186: 709-730. doi: 10.1016/j.conbuildmat.2018.07.208 [21] 范慧敏, 郑双杰, 李海锋, 等. 整体式桥台与组合梁结合部受力机理分析[J]. 建筑钢结构进展, 2023, 25(7): 85-94.FAN Hui-min, ZHENG Shuang-jie, LI Hai-feng, et al. Stress mechanism analysis of the Joint between integral abutment and composite beam[J]. Progress in Steel Building Structures, 2023, 25(7): 85-94. [22] 庄一舟, 宋琨生, 宋永青, 等. 整体桥H型钢-RC阶梯桩与土相互作用拟静力试验[J]. 交通运输工程学报, 2022, 22(5): 145-162.ZHUANG Yi-zhou, SONG Kun-sheng, SONG Yong-qing, et al. Quasi-static test on H-shaped steel-RC stepped pile-soil interaction of integral bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 145-162. [23] 朱伟庆, 时豪辉, 张冠华, 等. 埋入式H型钢桩-桥台节点受弯性能与承载力[J]. 交通运输工程学报, 2022, 22(5): 184-199. doi: 10.19818/j.cnki.1671-1637.2022.05.011ZHU Wei-qing, SHI Hao-hui, ZHANG Guan-hua, et al. Flexural performance and capacity of embedded H-shaped steel pile-abutment joint[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 184-199. doi: 10.19818/j.cnki.1671-1637.2022.05.011 [24] 赵秋红, 王晴薇, 董硕, 等. 整体式斜交连续梁桥抗震性能[J]. 交通运输工程学报, 2022, 22(6): 232-244. doi: 10.19818/j.cnki.1671-1637.2022.06.016ZHAO Qiu-hong, WANG Qing-wei, DONG Shuo, et al. Seismic behavior of integral skewed continuous girder bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 232-244. doi: 10.19818/j.cnki.1671-1637.2022.06.016 [25] 徐明, 林勇志, 周文轩. 整体式桥台后土压力累积效应反分析[J]. 交通运输工程学报, 2022, 22(5): 163-172. doi: 10.19818/j.cnki.1671-1637.2022.05.009XU Ming, LIN Yong-zhi, ZHOU Wen-xuan. Back analysis of build-up effect of earth pressure behind integral abutment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 163-172. doi: 10.19818/j.cnki.1671-1637.2022.05.009 [26] XU M, GUO J W. DEM study on the development of the earth pressure of granular materials subjected to lateral cyclic loading[J]. Computers and Geotechnics, 2021, 130: 103915. doi: 10.1016/j.compgeo.2020.103915 [27] 吴庆雄, 刘钰薇, 江越胜, 等. 墩梁半刚性连接的钢-混组合梁整体桥设计[J]. 桥梁建设, 2019, 49(1): 101-106.WU Qing-xiong, LIU Yu-wei, JIANG Yue-sheng, et al. Design of integral bridge with steel-concrete composite girder connected by semi-rigid joint[J]. Bridge Construction, 2019, 49(1): 101-106. [28] 黄育凡, 吴庆雄, 刘钰薇, 等. 墩梁半刚性连接节点受力性能与计算方法研究[J]. 土木工程学报, 2023, 56(10): 78-92.HUANG Yu-fan, WU Qing-xiong, LIU Yu-wei, et al. Study on mechanical performance and calculation method for the semi-rigid joints of pier-beam connection[J]. China Civil Engineering Journal, 2023, 56(10): 78-92. [29] 杜任远, 陈宝春. 活性粉末混凝土拱极限承载力试验研究[J]. 工程力学, 2013, 30(5): 42-48.DU Ren-yuan, CHEN Bao-chun. Experimental research on the ultimate load capacity of reactive powder concrete arches[J]. Engineering Mechanics, 2013, 30(5): 42-48. -
下载: