留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工字组合梁整体式桥台节点受力性能与刚度计算

黄育凡 方远威 吴庆雄 王渠 陈洲宇 陈明森

黄育凡, 方远威, 吴庆雄, 王渠, 陈洲宇, 陈明森. 工字组合梁整体式桥台节点受力性能与刚度计算[J]. 交通运输工程学报, 2025, 25(5): 329-341. doi: 10.19818/j.cnki.1671-1637.2025.05.022
引用本文: 黄育凡, 方远威, 吴庆雄, 王渠, 陈洲宇, 陈明森. 工字组合梁整体式桥台节点受力性能与刚度计算[J]. 交通运输工程学报, 2025, 25(5): 329-341. doi: 10.19818/j.cnki.1671-1637.2025.05.022
HUANG Yu-fan, FANG Yuan-wei, WU Qing-xiong, WANG Qu, CHEN Zhou-yu, CHEN Ming-sen. Mechanical performance and stiffness calculation of integral abutment joints in Ⅰ-shaped composite girders[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 329-341. doi: 10.19818/j.cnki.1671-1637.2025.05.022
Citation: HUANG Yu-fan, FANG Yuan-wei, WU Qing-xiong, WANG Qu, CHEN Zhou-yu, CHEN Ming-sen. Mechanical performance and stiffness calculation of integral abutment joints in Ⅰ-shaped composite girders[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 329-341. doi: 10.19818/j.cnki.1671-1637.2025.05.022

工字组合梁整体式桥台节点受力性能与刚度计算

doi: 10.19818/j.cnki.1671-1637.2025.05.022
基金项目: 

国家自然科学基金项目 52578183

国家自然科学基金项目 51608125

福建省自然科学基金项目 2022J01093

详细信息
    作者简介:

    黄育凡(1986-),男,福建罗源人,福州大学副教授,工学博士,从事组合结构桥梁、无伸缩缝桥梁研究

    通讯作者:

    吴庆雄(1973-),男,福建南靖人,福州大学研究员,工学博士

  • 中图分类号: U443.21

Mechanical performance and stiffness calculation of integral abutment joints in Ⅰ-shaped composite girders

Funds: 

National Natural Science Foundation of China 52578183

National Natural Science Foundation of China 51608125

Natural Science Foundation of Fujian Province 2022J01093

More Information
    Corresponding author: WU Qing-xiong (1973-), male, research fellow, PhD, wuqingx@fzu.edu.cn
Article Text (Baidu Translation)
  • 摘要: 为研究不同桩基类型对工字组合梁整体式桥台节点力学性能的影响规律,以钢筋混凝土(RC)桩、H型钢桩、超高性能混凝土(UHPC)桩3种桩基形式为变量,开展整体式桥台节点足尺模型试验,构建了实体有限元模型,对比分析了节点的受力特性、传力机制与破坏模式,基于力法原理提出了节点刚度计算方法。分析结果表明:采用不同桩基形式的节点试件在整体升温荷载下的纵向变形性能良好,节点破坏形式均是由于桩基破坏而造成节点整体破坏,栓钉均未弯曲或破坏,节点整体性能良好;在截面竖向承载力相同情况下,钢桩的剪切刚度和抗弯刚度最大,钢筋混凝土桩次之,UHPC桩最小;H型钢桩适应纵桥向变形能力和承载力最佳,UHPC桩次之,钢筋混凝土桩最低;桩顶和桥面板梁台界面这2个刚度突变位置是工字组合梁整体式桥台节点设计的关键;对比理论公式与有限元计算,得到温度作用下桥梁纵向变形误差小于2.7%,可用理论公式计算整体桥纵向变形;提出的不同桩基形式的节点刚度计算方法与试验结果误差均小于5%。研究成果为工字组合梁整体式桥台节点精细化设计提供理论支撑。

     

  • 图  1  实桥有限元模型与计算结果

    Figure  1.  Finite element model and calculation results of a real bridge

    图  2  采用RC桩的足尺节点模型构造(单位:cm)

    Figure  2.  Construction of full-scale joint model by RC pile (unit: cm)

    图  3  采用H型钢桩的足尺节点模型构造(单位:cm)

    Figure  3.  Construction of full-scale joint model by H-shaped steel pile (unit: cm)

    图  4  采用UHPC桩的足尺节点模型构造(单位:cm)

    Figure  4.  Construction of full-scale joint model by UHPC steel pile (unit: cm)

    图  5  加载装置与位移计测点布置(单位:cm)

    Figure  5.  Layout of loading device and displacement meter measuring point (unit: cm)

    图  6  节点模型加载

    Figure  6.  Loading of joint models

    图  7  节点力学响应骨架曲线对比

    Figure  7.  Comparative of skeleton curves of joint mechanical responses

    图  8  RC桩试件实体有限元模型

    Figure  8.  Finite element model of RC pile specimen

    图  9  有限元与试验节点弯矩-转角曲线对比

    Figure  9.  Comparison of moment-rotation curves between finite elements and experimental joints

    图  10  应力云图对比

    Figure  10.  Comparison of stress cloud maps

    图  11  主应力迹线对比

    Figure  11.  Comparison of principal stress traces

    图  12  节点力学模型

    Figure  12.  Mechanical model of joints

    图  13  节点弯矩

    Figure  13.  Moment of joints

    图  14  节点变形示意

    Figure  14.  Deformation schematic of joint

    图  15  不同桩基形式节点弯矩-转角曲线对比

    Figure  15.  Comparison of moment-rotation curves of joints with different pile types

    表  1  不同形式桩基参数对比

    Table  1.   Comparison of parameters of different pile types

    试件序号 桩基类型 材料强度 截面尺寸/mm
    1 RC桩 C30 直径为1 000
    2 H型钢桩 Q345 高度为770,宽度为765,腹板厚度为16,翼缘厚度为16
    3 UHPC桩 R130 高度为434,厚度为420,腹板厚度为100,翼缘厚度为100
    下载: 导出CSV

    表  2  温度作用下桥梁纵向变形

    Table  2.   Longitudinal deformation under temperature action

    荷载作用 理论计算值/mm 有限元计算值/mm 误差/%
    整体升温 8.42 8.66 2.7
    整体降温 -1.30 -1.33 2.6
    下载: 导出CSV

    表  3  节点刚度对比

    Table  3.   Comparison of joint stiffness

    桩型 剪切刚度/(105 kN·m-1) 剪切刚度与RC桩试件对比/% 抗弯刚度/(105 kN·m·rad-1) 抗弯刚度与RC桩试件对比/%
    RC桩 3.20 1.54
    H型钢桩 3.54 10.63 1.60 3.90
    UHPC桩 2.44 -23.75 1.19 -22.73
    下载: 导出CSV

    表  4  破坏模式对比

    Table  4.   Comparison of failure modes

    部位 RC桩 H型钢桩 UHPC桩
    桥面板
    桥台
    桩基
    下载: 导出CSV

    表  5  纵向变形能力对比

    Table  5.   Comparison of longitudinal deformation capacity

    桩型 破坏位移/mm 破坏位移与RC桩试件对比/% 极限荷载/kN 极限荷载与RC桩试件对比/%
    RC桩 35.2 925.1
    H型钢桩 102.3 190.6 1 687.0 82.4
    UHPC桩 66.9 90.1 1 058.0 14.4
    下载: 导出CSV

    表  6  节点抗弯刚度对比

    Table  6.   Comparison of joint bending stiffnesses

    桩型 抗弯刚度/(kN·m·rad-1)
    试验值/105 有限元/105 误差/%
    RC桩 1.54 1.46 5.1
    H型钢桩 1.60 1.47 8.1
    UHPC桩 1.19 1.14 4.2
    下载: 导出CSV
  • [1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述[J]. 中国公路学报, 2024, 37(12): 1-160.

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2024[J]. China Journal of Highway and Transport, 2024, 37(12): 1-160.
    [2] 徐明, 刘鹏飞. 整体式桥台研究综述[J]. 工程力学, 2016, 33(4): 1-8.

    XU Ming, LIU Peng-fei. Research on integral bridge abutments[J]. Engineering Mechanics, 2016, 33(4): 1-8.
    [3] AZIZINAMINI A, POWER E H, MYERS G F, et al. Design guide for bridges for service life[M]. Washington DC: TRB Publications, 2014.
    [4] 陈宝春, 黄福云, 薛俊青, 等. 无伸缩缝桥梁研究综述[J]. 交通运输工程学报, 2022, 22(5): 1-40. doi: 10.19818/j.cnki.1671-1637.2022.05.001

    CHEN Bao-chun, HUANG Fu-yun, XUE Jun-qing, et al. Review on research of jointless bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 1-40. doi: 10.19818/j.cnki.1671-1637.2022.05.001
    [5] ALSHAWABKEH Y M, ISSA M A. Maximum permissible safe length of integral abutment bridges supported by steel H-piles[J]. Structures, 2024, 62(3): 106-130.
    [6] ARSOY S, BARKER R, DUNCAN J M. Experimental and analytical investigations of piles and abutments of integral bridges[J]. Earth Planetary Science Letters, 2000, 331(4): 364-365.
    [7] DICLELI M, ALBHAISI S M. Effect of cyclic thermal loading on the performance of steel H-piles in integral bridges with stub-abutments[J]. Journal of Constructional Steel Research, 2004, 60(2): 161-182. doi: 10.1016/j.jcsr.2003.09.003
    [8] AHN J H, YOON J H, KIM J H, et al. Evaluation on thebehavior of abutment-pile connection in integral abutment bridge[J]. Journal of Constructional Steel Research, 2011, 67(7): 1134-1148. doi: 10.1016/j.jcsr.2011.02.007
    [9] AROCKIASAMY M, ARVAN P A. Behavior, performance, and evaluation of prestressed concrete/steel pipe/steel H-pile to pile cap connections[J]. Practice Periodical on Structural Design and Construction, 2022, 27(2): 03122001. doi: 10.1061/(ASCE)SC.1943-5576.0000671
    [10] 黄福云, 桂奎, 易志宏, 等. 基于温度变形效应的整体式桥台-H型钢桩-土相互作用拟静力试验研究[J]. 铁道学报, 2023, 45(3): 109-118.

    HUANG Fu-yun, GUI Kui, YI Zhi-hong, et al. Study on interaction between integral abutment, H-shaped steel pile and soil under quasi-static test based on temperature deformation effect[J]. Journal of the China Railway Society, 2023, 45(3): 109-118.
    [11] 黄福云, 程俊峰, 薛俊青, 等. 带EPS的整体式桥台-桩-土相互作用拟静力试验[J]. 中国公路学报, 2019, 32(7): 77-89.

    HUANG Fu-yun, CHENG Jun-feng, XUE Jun-qing, et al. Experiment on abutment-pile-soil interaction with expanded polystyrenes in integral abutment jointless bridges[J]. China Journal of Highway and Transport, 2019, 32(7): 77-89.
    [12] 黄福云, 何凌峰, 单玉麟, 等. 整体式桥台-混凝土桩-土相互作用拟静力试验[J]. 岩土力学, 2021, 42(7): 1803-1814

    HUANG Fu-yun, HE Ling-feng, SHAN Yu-lin, et al. Experiment on interaction of soil-abutment-RC pile in integral abutment jointless bridges (IAJBs)[J]. Rock and Soil Mechanics, 2021, 42(7): 1803-1814.
    [13] 黄福云, 李岚, 何凌峰, 等. 整体式桥台-RC桩-土体系受力性能[J]. 哈尔滨工业大学学报, 2023, 55(3): 128-138.

    HUANG Fu-yun, LI-Lan, HE Ling-feng, et al. Mechanical behavior of abutment-RC pile-soil structure in integral abutment bridges[J]. Journal of Harbin Institute of Technology, 2023, 55(3): 128-138.
    [14] 彭大文, 陈朝慰, 洪锦祥. 整体式桥台桥梁的桥台结点受力性能研究[J]. 中国公路学报, 2005, 18(1): 46-50.

    PENG Da-wen, CHEN Chao-wei, HONG Jin-xiang. Study of loaded property of abutment node of integral abutment bridges[J]. China Journal of Highway and Transport, 2005, 18(1): 46-50.
    [15] 彭大文, 陈晓冬, 袁燕. 整体式桥台桥梁台后土压力的季节性变化研究[J]. 岩土工程学报, 2003, 25(2): 135-139.

    PENG Da-wen, CHEN Xiao-dong, YUAN Yan. Study on seasonal fluctuation of earth pressure behind the abutment[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 135-139.
    [16] 洪锦祥, 彭大文. 桩基础的整体式桥台桥梁受力性能研究[J]. 中国公路学报, 2002, 15(4): 43-48.

    HONG Jin-xiang, PENG Da-wen. Research on the loaded property of integral abutment bridges with flexible piles[J]. China Journal of Highway and Transport, 2002, 15(4): 43-48.
    [17] 金晓勤. 新型无缝桥梁研究与应用[D]. 湖南: 湖南大学, 2000.

    JIN Xiao-qin. Research and application of new seamless bridge[D]. Hunan: Hunan University, 2000.
    [18] LIANG C, LIU Y Q, YANG F. Flexural strengths of steel girder-concrete abutment connections incorporating the effect of perfobond connectors[J]. Engineering Structures, 2020, 214: 110611. doi: 10.1016/j.engstruct.2020.110611
    [19] LIANG C, LIU Y Q, LIU Y Q. An orthogonal component method for steel girder-concrete abutment connections in integral abutment bridges[J]. Journal of Constructional Steel Research, 2021, 180: 106604. doi: 10.1016/j.jcsr.2021.106604
    [20] LIANG C, LIU Y Q, ZHAO C J, et al. Experimental and numerical study on an innovative girder-abutment joint in composite bridges with integral abutments[J]. Construction and Building Materials, 2018, 186: 709-730. doi: 10.1016/j.conbuildmat.2018.07.208
    [21] 范慧敏, 郑双杰, 李海锋, 等. 整体式桥台与组合梁结合部受力机理分析[J]. 建筑钢结构进展, 2023, 25(7): 85-94.

    FAN Hui-min, ZHENG Shuang-jie, LI Hai-feng, et al. Stress mechanism analysis of the Joint between integral abutment and composite beam[J]. Progress in Steel Building Structures, 2023, 25(7): 85-94.
    [22] 庄一舟, 宋琨生, 宋永青, 等. 整体桥H型钢-RC阶梯桩与土相互作用拟静力试验[J]. 交通运输工程学报, 2022, 22(5): 145-162.

    ZHUANG Yi-zhou, SONG Kun-sheng, SONG Yong-qing, et al. Quasi-static test on H-shaped steel-RC stepped pile-soil interaction of integral bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 145-162.
    [23] 朱伟庆, 时豪辉, 张冠华, 等. 埋入式H型钢桩-桥台节点受弯性能与承载力[J]. 交通运输工程学报, 2022, 22(5): 184-199. doi: 10.19818/j.cnki.1671-1637.2022.05.011

    ZHU Wei-qing, SHI Hao-hui, ZHANG Guan-hua, et al. Flexural performance and capacity of embedded H-shaped steel pile-abutment joint[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 184-199. doi: 10.19818/j.cnki.1671-1637.2022.05.011
    [24] 赵秋红, 王晴薇, 董硕, 等. 整体式斜交连续梁桥抗震性能[J]. 交通运输工程学报, 2022, 22(6): 232-244. doi: 10.19818/j.cnki.1671-1637.2022.06.016

    ZHAO Qiu-hong, WANG Qing-wei, DONG Shuo, et al. Seismic behavior of integral skewed continuous girder bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 232-244. doi: 10.19818/j.cnki.1671-1637.2022.06.016
    [25] 徐明, 林勇志, 周文轩. 整体式桥台后土压力累积效应反分析[J]. 交通运输工程学报, 2022, 22(5): 163-172. doi: 10.19818/j.cnki.1671-1637.2022.05.009

    XU Ming, LIN Yong-zhi, ZHOU Wen-xuan. Back analysis of build-up effect of earth pressure behind integral abutment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 163-172. doi: 10.19818/j.cnki.1671-1637.2022.05.009
    [26] XU M, GUO J W. DEM study on the development of the earth pressure of granular materials subjected to lateral cyclic loading[J]. Computers and Geotechnics, 2021, 130: 103915. doi: 10.1016/j.compgeo.2020.103915
    [27] 吴庆雄, 刘钰薇, 江越胜, 等. 墩梁半刚性连接的钢-混组合梁整体桥设计[J]. 桥梁建设, 2019, 49(1): 101-106.

    WU Qing-xiong, LIU Yu-wei, JIANG Yue-sheng, et al. Design of integral bridge with steel-concrete composite girder connected by semi-rigid joint[J]. Bridge Construction, 2019, 49(1): 101-106.
    [28] 黄育凡, 吴庆雄, 刘钰薇, 等. 墩梁半刚性连接节点受力性能与计算方法研究[J]. 土木工程学报, 2023, 56(10): 78-92.

    HUANG Yu-fan, WU Qing-xiong, LIU Yu-wei, et al. Study on mechanical performance and calculation method for the semi-rigid joints of pier-beam connection[J]. China Civil Engineering Journal, 2023, 56(10): 78-92.
    [29] 杜任远, 陈宝春. 活性粉末混凝土拱极限承载力试验研究[J]. 工程力学, 2013, 30(5): 42-48.

    DU Ren-yuan, CHEN Bao-chun. Experimental research on the ultimate load capacity of reactive powder concrete arches[J]. Engineering Mechanics, 2013, 30(5): 42-48.
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-29
  • 录用日期:  2025-09-26
  • 修回日期:  2025-07-04
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回