留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能钢管混凝土叠合构件抗侧向冲击性能

杨晓强 张远 朱利国 赖志超

杨晓强, 张远, 朱利国, 赖志超. 高性能钢管混凝土叠合构件抗侧向冲击性能[J]. 交通运输工程学报, 2025, 25(5): 399-413. doi: 10.19818/j.cnki.1671-1637.2025.05.026
引用本文: 杨晓强, 张远, 朱利国, 赖志超. 高性能钢管混凝土叠合构件抗侧向冲击性能[J]. 交通运输工程学报, 2025, 25(5): 399-413. doi: 10.19818/j.cnki.1671-1637.2025.05.026
YANG Xiao-qiang, ZHANG Yuan, ZHU Li-guo, LAI Zhi-chao. Lateral impact behavior of high-performance concrete-filled steel tubular composite structural members[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 399-413. doi: 10.19818/j.cnki.1671-1637.2025.05.026
Citation: YANG Xiao-qiang, ZHANG Yuan, ZHU Li-guo, LAI Zhi-chao. Lateral impact behavior of high-performance concrete-filled steel tubular composite structural members[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 399-413. doi: 10.19818/j.cnki.1671-1637.2025.05.026

高性能钢管混凝土叠合构件抗侧向冲击性能

doi: 10.19818/j.cnki.1671-1637.2025.05.026
基金项目: 

国家自然科学基金青年基金项目 52108122

福建省自然科学基金青创项目 2022J05022

详细信息
    作者简介:

    杨晓强(1991-),男,浙江湖州人,福州大学副研究员,工学博士,从事高性能组合结构研究

    通讯作者:

    赖志超(1986-),男,福建泉州人,福州大学教授,工学博士

  • 中图分类号: U441.2

Lateral impact behavior of high-performance concrete-filled steel tubular composite structural members

Funds: 

National Natural Science Foundation of China 52108122

Natural Science Foundation of Fujian Province 2022J05022

More Information
    Corresponding author: LAI Zhi-chao (1986-), male, professor, PhD, laiz@fzu.edu.cn
Article Text (Baidu Translation)
  • 摘要: 设计制作了4根方形高性能钢管混凝土叠合构件,考虑了C80高强混凝土与超高性能混凝土(UHPC)等不同混凝土类别的影响;采用落锤试验机开展侧向冲击试验,探究了冲击力、变形和能量吸收等关键性能指标;建立与校准有限元模型,并对构件配筋情况、钢管厚度、钢管强度以及轴压比进行了参数分析。研究结果表明:内外混凝土均为UHPC的叠合构件能够应对更大能量的侧向冲击;外包UHPC的叠合构件抗冲击性能明显优于外包C80高强混凝土的叠合构件,其冲击力平台值提高了约10%,而跨中峰值位移与残余变形分别降低了11.2%和21.6%;建立的有限元模型计算获得的冲击力、变形等性能指标与试验基本一致,证明了所建立模型的可靠性;参数分析表明,钢管厚度及强度的增大能显著提高构件的冲击力平台值,降低跨中峰值位移,从而提高构件的抗冲击性能;相对于素混凝土,外包混凝土中钢筋的配置能有效提高构件的抗冲击性能,但在满足最小配筋率后,钢筋数量和直径的进一步增大对构件抗冲击性能的提高影响有限;轴压比在0.1以内对构件的影响较小,但轴压比的进一步增大会显著削弱构件的抗冲击性能,直至发生失稳破坏。所得成果揭示了高性能钢管混凝土叠合构件优异的抗冲击性能,进一步提升了此类构件在大跨高墩桥梁中的应用潜力。

     

  • 图  1  试件设计(单位:mm)

    Figure  1.  Specimen design (unit: mm)

    图  2  冲击试验装置

    Figure  2.  Setup of impact test

    图  3  侧向冲击过程

    Figure  3.  Lateral impact process

    图  4  试件的破坏模态

    Figure  4.  Failure mode of specimens

    图  5  冲击力与跨中位移时程曲线

    Figure  5.  Impact force and mid-span displacement time-history curves

    图  6  冲击力与跨中位移的典型时程曲线

    Figure  6.  Typical time-history curves of impact force and mid-span displacement

    图  7  试件UHPC-UHPC的冲击力-跨中位移曲线

    Figure  7.  Impact force-mid-span displacement curves of specimen UHPC-UHPC

    图  8  关键性能指标对比

    Figure  8.  Comparison of key performance indicators

    图  9  有限元模型

    Figure  9.  Finite element model

    图  10  构件破坏模态对比

    Figure  10.  Comparison of failure mode

    图  11  有限元模拟结果与试验的冲击力时程曲线对比

    Figure  11.  Comparison of impact force time-history curves between the FE simulation and tests

    图  12  有限元模拟结果与试验的跨中位移时程曲线对比

    Figure  12.  Comparison of mid-span displacement time-history curves between the FE simulation and tests

    图  13  钢管厚度的影响

    Figure  13.  Influence of thickness of steel tube

    图  14  钢管强度的影响

    Figure  14.  Influence of strength of steel tube

    图  15  钢筋布置的影响

    Figure  15.  Influence of reinforcement configuration

    图  16  钢筋直径的影响

    Figure  16.  Influence of diameter of reinforcement

    图  17  轴压比的影响

    Figure  17.  Influence of axial pressure ratio

    表  1  试件基本参数

    Table  1.   Basic parameters of specimens

    试件名称 L0/mm B/mm ts/mm fy/MPa 核心混凝土fcu/MPa 外包混凝土fcu/MPa ρ/% m/kg h/m 冲击位置 Ei/kJ
    C80-UHPC 1 600 240 5 758 84.0 155.9 0.35 547 3 跨中 15
    UHPC-C80 155.9 84.0
    C80-C80 84.0 84.0
    UHPC-UHPC 155.9 155.9
    下载: 导出CSV

    表  2  钢材基本力学性能

    Table  2.   Basic mechanical properties of steel

    钢材 牌号 厚度或直径/mm Es /GPa fy/MPa fu/MPa δ/%
    方钢管 Q690 5 208 758 802 20
    箍筋 HRB400 6 200 400 566 21
    纵筋 HRB400 8 200 400 573 25
    下载: 导出CSV

    表  3  C80高强混凝土配合比

    Table  3.   Mix proportions of C80 high-strength concrete

    水泥/(kg·m-3) 硅灰/(kg·m-3) 粗骨料/(kg·m-3) 细骨料/(kg·m-3) 减水剂/(kg·m-3) 水/(kg·m-3) 水胶比
    579 102 1 050 617 16 172 0.25
    下载: 导出CSV

    表  4  UHPC配合比

    Table  4.   Mix proportions of UHPC

    水泥/(kg·m-3) 硅灰/(kg·m-3) 石英砂/(kg·m-3) 石英粉/(kg·m-3) 减水剂/(kg·m-3) 水/(kg·m-3) 钢纤维/(kg·m-3) 水胶比
    40~70目 20~40目 10~20目 400目
    859.5 258.0 120.5 352.0 452.5 80.5 21.5 201.0 160.0 0.18
    下载: 导出CSV

    表  5  混凝土的基本力学性能

    Table  5.   Basic mechanical properties of concrete

    混凝土类型 龄期 fcu/MPa fc/MPa Ec/GPa
    C80 试验当天 86.0 39.2
    UHPC 试验当天 155.9 145 45.0
    下载: 导出CSV

    表  6  试验结果

    Table  6.   Summary of test results

    试件名称 Fm/kN Fp/kN um/mm ur/mm Ei/kJ Eg/kJ Eg/Ei Eg/ur/(kJ·mm-1)
    C80-C80 1 719 313 32.1 17.6 15 9.7 0.65 0.55
    UHPC-C80 1 906 334 29.8 15.3 15 8.8 0.59 0.58
    C80-UHPC 2 073 343 28.5 13.8 15 7.9 0.53 0.57
    UHPC-UHPC 2 096 372 28.3 13.5 15 9.4 0.63 0.70
    下载: 导出CSV
  • [1] 朱翔, 陆新征, 杜永峰, 等. 列车脱轨后运行姿态模拟[J]. 振动与冲击, 2014, 33(23): 145-149.

    ZHU Xiang, LU Xin-zheng, DU Yong-feng, et al. Simulation for running attitude of a train after derailment[J]. Journal of Vibration and Shock, 2014, 33(23): 145-149.
    [2] 陆新征, 江见鲸. 世界贸易中心飞机撞击后倒塌过程的仿真分析[J]. 土木工程学报, 2001, 34(6): 8-10.

    LU Xin-zheng, JIANG Jian-jing. Dynamic finite element simulation for the collapse of world trade center[J]. China Civil Engineering Journal, 2001, 34(6): 8-10.
    [3] XU L J, LU X Z, SMITH S T, et al. Scaled model test for collision between over-height truck and bridge superstructure[J]. International Journal of Impact Engineering, 2012, 49: 31-42. doi: 10.1016/j.ijimpeng.2012.05.003
    [4] SHARMA H, HURLEBAUS S, GARDONI P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact[J]. International Journal of Impact Engineering, 2012, 43: 52-62. doi: 10.1016/j.ijimpeng.2011.11.007
    [5] TAN J S, ELBAZ K, WANG Z F, et al. Lessons learnt from bridge collapse: A view of sustainable management[J]. Sustainability, 2020, 12(3): 1205. doi: 10.3390/su12031205
    [6] LIAO F Y, HAN L H, TAO Z. Behaviour of composite joints with concrete encased CFST columns under cyclic loading: Experiments[J]. Engineering Structures, 2014, 59: 745-764. doi: 10.1016/j.engstruct.2013.11.030
    [7] HAN L H, AN Y F. Performance of concrete-encased CFST stub columns under axial compression[J]. Journal of Constructional Steel Research, 2014, 93: 62-76. doi: 10.1016/j.jcsr.2013.10.019
    [8] HU C M, HAN L H, HOU C C. Concrete-encased CFST members with circular sections under laterally low velocity impact: Analytical behaviour[J]. Journal of Constructional Steel Research, 2018, 146: 135-154. doi: 10.1016/j.jcsr.2018.03.017
    [9] HOU C C, HAN L H, WANG F C, et al. Study on the impact behaviour of concrete-encased CFST box members[J]. Engineering Structures, 2019, 198: 109536. doi: 10.1016/j.engstruct.2019.109536
    [10] HOU C C, HAN L H, LIANG Z S, et al. Performance of concrete-encased CFST subjected to low-velocity impact: Shear resistance analysis[J]. International Journal of Impact Engineering, 2021, 150: 103798. doi: 10.1016/j.ijimpeng.2020.103798
    [11] 丁纪楠, 王庆贺, 任庆新. 圆中空夹层钢管混凝土叠合短柱轴压受力性能研究[J]. 建筑结构学报, 2024, 45(2): 123-135.

    DING Ji-nan, WANG Qing-he, REN Qing-xin. Mechanical performance of circular concrete-encased CFDST stub columns under axial compression[J]. Journal of Building Structures, 2024, 45(2): 123-135.
    [12] HAN L H, WANG Z B, XU W, et al. Behavior of concrete-encased CFST members under axial tension[J]. Journal of Structural Engineering, 2016, 142 (2): 04015149. doi: 10.1061/(ASCE)ST.1943-541X.0001422
    [13] 李明伦, 任庆新, 王庆贺, 等. 方中空夹层钢管混凝土叠合构件受弯性能试验研究与有限元分析[J]. 建筑钢结构进展, 2025, 27(6): 23-34.

    LI Ming-lun, REN Qing-xin, WANG Qing-he, et al. Experimental study and finite element analysis on flexural performance of square concrete-encased concrete-filled double-skin steel tubular members[J]. Progress in Steel Building Structures, 2025, 27(6): 23-34.
    [14] WANG K, ZHU Z Y, YANG Y, et al. Study on shear capacity of prestressed composite joints with concrete-encased CFST columns[J]. Advances in Structural Engineering, 2021, 24 (11): 2457-2471. doi: 10.1177/13694332211000558
    [15] WU Q X, SHE Z M, YUAN H H. Experimental study of UHPC-encased CFST stub columns under axial compression[J]. Structures, 2021, 32: 433-447. doi: 10.1016/j.istruc.2021.03.053
    [16] CHEN H Y, LIAO F Y, YANG Y X, et al. Behavior of ultra-high-performance concrete (UHPC) encased concrete-filled steel tubular (CFST) stub columns under axial compression[J]. Journal of Constructional Steel Research, 2023, 202: 107795. doi: 10.1016/j.jcsr.2023.107795
    [17] GAO X L, SHEN S Y, CHEN G X, et al. Experimental and numerical study on axial compressive behaviors of reinforced UHPC-CFST composite columns[J]. Engineering Structures, 2023, 278: 115315. doi: 10.1016/j.engstruct.2022.115315
    [18] WU Q X, XU Z K, YUAN H H, et al. Ultimate bearing capacity of UHPC-encased CFST medium-long columns under axial compression[J]. Magazine of Concrete Research, 2023, 75(10): 487-505. doi: 10.1680/jmacr.22.00050
    [19] 杨昱幸, 廖飞宇, 王静峰, 等. 超高性能混凝土(UHPC)包覆钢管混凝土叠合构件抗弯性能试验研究[J]. 工业建筑, 2024, 54(11): 112-120.

    YANG Yu-xing, LIAO Fei-yu, WANG Jing-feng, et al. Experimental research on flexural performance of UHPC encased CFSTs under pure bending[J]. Industrial Construction, 2024, 54(11): 112-120.
    [20] 杨昱幸, 廖飞宇, 陈宇峰, 等. 超高性能混凝土(UHPC)包覆钢管混凝土叠合柱偏压性能试验研究[J]. 工业建筑, 2024, 54(11): 121-128.

    YANG Yu-xing, LIAO Fei-yu, CHEN Yu-feng, et al. Research on mechanical properties of UHPC encased CFSTs under eccentrically compressive loading[J]. Industrial Construction, 2024, 54(11): 121-128.
    [21] AYOUGH P, WANG Y H, ZENG W Y, et al. Numerical investigation and design of UHPC-encased CFST stub columns under axial compression[J]. Engineering Structures, 2024, 302: 117387. doi: 10.1016/j.engstruct.2023.117387
    [22] 韦建刚, 应浩东, 杨艳. UHPC缀板-钢管混凝土复合柱地震响应及数值模拟[J]. 交通运输工程学报, 2025, 25(3): 82-100.

    WEI Jian-gang, YING Hao-dong, YANG Yan. Seismic response and numerical simulation of concrete-filled steel tubular composite column with UHPC plates[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 82-100.
    [23] 孔文渊, 邢智权, 陈力波, 等. 外包UHPC加固长期荷载作用下CFST墩柱轴压力学性能[J/OL]. 交通运输工程学报, 2025, https://link.cnki.net/urlid/61.1369.u.20250910.1716.003.

    KONG Wen-yuan, XING Zhi-quan, CHEN Li-bo, et al. Axial compression performance of CFST pier column under long-term load reinforced by encased UHPC[J/OL]. Journal of Traffic and Transportation Engineering, 2025, https://link.cnki.net/urlid/61.1369.u.20250910.1716.003.
    [24] 胡昌明, 韩林海. 圆形钢管混凝土叠合构件抗冲击性能试验研究[J]. 土木工程学报, 2016, 49(10): 11-17.

    HU Chang-ming, HAN Lin-hai. Experimental behavior of circular concrete-encased concrete-filled steel tubes under lateral impact[J]. China Civil Engineering Journal, 2016, 49(10): 11-17.
    [25] HUANG Y E, YOUNG B. The art of coupon tests[J]. Journal of Constructional Steel Research, 2014, 96: 159-175. doi: 10.1016/j.jcsr.2014.01.010
    [26] 杨晓强. 结构钢动态本构模型与方形高强CFST构件抗侧向冲击性能[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    YANG Xiao-qiang. Dynamic constitutive model of structural steel and lateral impact resistance of square high-strength CFST members[D]. Harbin: Harbin Institute of Technology, 2020.
    [27] WANG Y, QIAN X D, LIEW J Y R, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact[J]. International Journal of Impact Engineering, 2014, 72: 1-16. doi: 10.1016/j.ijimpeng.2014.05.004
    [28] MURRAY Y D. Users manual for LS-DYNA concrete material model 159[R]. Washington DC: Federal Highway Administration, 2007.
    [29] JIA P C, WU H, WANG R, et al. Dynamic responses of reinforced ultra-high performance concrete members under low-velocity lateral impact[J]. International Journal of Impact Engineering, 2021, 150: 103818. doi: 10.1016/j.ijimpeng.2021.103818
    [30] GUO W, FAN W, SHAO X D, et al. Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations[J]. Composite Structures, 2018, 185: 307-326. doi: 10.1016/j.compstruct.2017.11.022
    [31] LI C J, AOUDE H. Effect of UHPC jacketing on the shear and flexural behaviour of high-strength concrete beams[J]. Structures, 2023, 51: 1972-1996. doi: 10.1016/j.istruc.2023.03.104
    [32] FAN W, XU X, ZHANG Z Y, et al. Performance and sensitivity analysis of UHPFRC-strengthened bridge columns subjected to vehicle collisions[J]. Engineering Structures, 2018, 173: 251-268. doi: 10.1016/j.engstruct.2018.06.113
    [33] FAN W, SHEN D J, YANG T, et al. Experimental and numerical study on low-velocity lateral impact behaviors of RC, UHPFRC and UHPFRC-strengthened columns[J]. Engineering Structures, 2019, 191: 509-525. doi: 10.1016/j.engstruct.2019.04.086
    [34] RUSSELL H G, GRAYBEAL B A. Ultra-high performance concrete: A state-of-the-art report for the bridge community[R]. Washington DC: Federal Highway Administration, 2013.
    [35] GRAYBEAL B A. Material property characterization of ultra-high performance concrete[R]. Washington DC: Federal Highway Administration, 2006.
    [36] YUN X, GARDNER L. Stress-strain curves for hot-rolled steels[J]. Journal of Constructional Steel Research, 2017, 133: 36-46. doi: 10.1016/j.jcsr.2017.01.024
    [37] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering, 1984, 2(2): 179-208. doi: 10.1016/0734-743X(84)90005-8
    [38] YANG X Q, YANG H, GARDNER L, et al. A continuous dynamic constitutive model for normal-and high-strength structural steels[J]. Journal of Constructional Steel Research, 2022, 192: 107254. doi: 10.1016/j.jcsr.2022.107254
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  22
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-11
  • 录用日期:  2025-08-25
  • 修回日期:  2025-07-05
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回