Progressive collapse prevention design of fly-bird-type arch bridges considering tie bar failure
-
摘要: 为提高飞鸟式拱桥在系杆断索下的防连续性垮塌能力,基于强健性设计的备用路径法,结合相关工程案例与研究,提出了三角刚架区、钢管混凝土立柱、带斜压杆式立柱及立柱节点部分简支体系等4种局部加强结构体系;建立LS-DYNA显式动力学断索模拟方法,并基于室内试验数据与仿真结果进行了对比分析和验证;采用该断索模拟方法,对4种结构体系在系杆断索下的动力响应进行仿真,分别对主跨和边跨构件的内力极值进行了比较,并对结构承载力进行验算。研究结果表明:LS-DYNA动力分析法误差较小,适用于系杆拱桥中水平系杆断索的动力响应模拟分析;4种结构体系均有效降低了系杆断索下剩余结构的动力响应,其中钢管混凝土立柱体系对改善边拱肋弯矩和纵梁弯矩的动力响应最为显著,而立柱节点部分简支体系则最有利于降低主拱肋和立柱弯矩的动力响应;将钢管混凝土立柱体系应用于新建飞鸟式拱桥,从结构动力性能和外观协调性上综合效益最佳;将立柱节点部分简支体系应用于既有飞鸟式拱桥的改造,既能改善结构动力性能又能有效防止节点开裂,且施工成本低廉、简便易行,经济性最好,从而为该桥型的强健性设计和改造提供了各自适用、可行的途径。Abstract: To enhance the progressive collapse prevention ability of the fly-bird-type arch bridges in the event of tie bar failure, four locally strengthened structural systems were proposed based on the alternative path method of robust design along with relevant engineering cases and studies: triangular stiffener zone system, concrete-filled steel tube column system, columns with diagonal compression bars system, and partially simply-supported column connection system. An explicit dynamic cable-breaking simulation method was established using LS-DYNA. Based on laboratory test data and simulation results, the method was compared and validated. The dynamic response of four structural systems under tie bar failure was simulated using this cable-breaking simulation method. The ultimate internal force indices of main-span and side-span members were compared, and the structural bearing capacity of each system under tie bar failure conditions was evaluated. According to the results, with smaller error, the LS-DYNA dynamic analysis is suitable for simulating the dynamic response of horizontal tie bar failure of the tied-arch bridge. All four structural systems effectively reduce the dynamic response of the rest structures under tie bar failure. Specifically, the concrete-filled steel tube column system is most advantageous for reducing the dynamic response of the bending moment of the side arch rib and longitudinal beam, while the partially simply-supported column connection system is most effective in minimizing the dynamic response of bending moment of the main arch rib and column. The application of concrete-filled steel tube column systems in the construction of new fly-bird-type arch bridges provides the best overall benefits in terms of structural dynamic performance and aesthetic coordination. Meanwhile, the application of partially simply-supported column joints in the reinforcement of existing fly-bird-type arch bridges not only enhances structural dynamic performance but also effectively prevents joint cracking. Additionally, this approach maintains a low construction cost with simplicity and practicality, achieving the optimal economic efficiency. Therefore, practical and viable approaches are provided for the robust design and reinforcement of this type of bridge.
-
表 1 非线性本构材料损伤参数
Table 1. Damage parameters of nonlinear constitutive materials
参数 *MAT_172 *MAT_003 *MAT_174 *MAT_096 密度/(kg·m-3) 2 600 7 500 2 600 2 600 初始卸载弹性模量/GPa 30.0 200.0 34.5 30.0 泊松比 0.2 0.2 0.2 0.2 屈服强度/MPa 20.1 400.0 20.1 20.1 极限强度/MPa 2.01 620.0 2.01 2.01 达到抗压强度时应变 0.002 0 0.200 0 0.002 2 0.002 2 表 2 下游侧动力响应的试验与模拟数据对比
Table 2. Comparison of experimental and simulation data of dynamic response on the downstream side
指标 工况Ⅰ 工况Ⅱ 工况Ⅲ 工况Ⅳ 实测下游 模拟下游 实测与模拟之比 实测下游 模拟下游 实测与模拟之比 实测下游 模拟下游 实测与模拟之比 实测下游 模拟下游 实测与模拟之比 拱墩水平位移/mm 12.23 13.15 0.93 25.20 26.38 0.96 28.65 28.05 1.02 105.22 110.20 0.95 拱肋应力/MPa 22.70 23.70 0.96 53.56 57.30 0.93 55.24 54.74 1.01 212.71 235.00 0.91 系杆轴力/MN 24.83 24.87 0.99 37.69 42.75 0.88 56.48 57.68 0.98 表 3 上游侧动力响应的试验与模拟数据对比
Table 3. Comparison of experimental and simulation data of dynamic response on the upstream side
指标 工况Ⅰ 工况Ⅱ 工况Ⅲ 工况Ⅳ 实测上游 模拟上游 实测与模拟之比 实测上游 模拟上游 实测与模拟之比 实测上游 模拟上游 实测与模拟之比 实测上游 模拟上游 实测与模拟之比 拱墩水平位移/mm 3.39 3.39 1.00 26.39 25.20 1.04 9.94 9.77 1.02 108.98 106.00 1.03 拱肋应力/MPa 5.70 5.94 0.96 47.20 47.80 0.99 16.88 15.20 1.10 219.00 226.00 0.97 系杆轴力/MN 13.97 13.90 1.07 39.04 44.01 0.89 表 4 原结构动力响应极值
Table 4. Dynamic extreme responses of original structure
指标 主拱肋轴力/MN 立柱轴力/MN 边拱肋轴力/MN 纵梁轴力/MN 主拱肋弯矩/(MN·m) 立柱弯矩/(MN·m) 边拱肋弯矩/(MN·m) 纵梁弯矩/(MN·m) 数值 14.59 -2.81 -7.69 1.72 -1.77 1.17 12.9 6.1 表 5 全部动力响应指标对比
Table 5. Comparison of overall dynamic response indicators
分析指标 三角刚架区体系 钢管混凝土立柱体系 带斜压杆式立柱体系 立柱节点部分简支体系 数值 变化幅度/% 数值 变化幅度/% 数值 变化幅度/% 数值 变化幅度/% 主拱肋轴力/MN -11.98 -18.10 -14.38 -1.40 -14.56 -0.21 -14.57 -0.34 立柱轴力/MN -2.25 -19.90 -2.97 -15.70 -2.62 -6.70 -2.67 -5.10 边拱肋轴力/MN -4.33 -43.70 -3.50 -56.70 -2.78 -82.90 -6.57 -14.60 纵梁轴力/MN 1.13 -34.30 -1.58 -83.10 -1.63 -83.70 1.45 -15.70 主拱肋弯矩/(MN·m) -1.23 -30.51 -1.42 -19.77 -1.44 -18.64 -1.03 -41.80 立柱弯矩/(MN·m) 0.76 -35.04 1.45 23.93 0.89 -23.93 0.37 -68.38 边拱肋弯矩/(MN·m) 1.35 -89.53 1.07 -91.71 2.17 -83.18 12.13 -5.97 纵梁弯矩/(MN·m) 0.30 -95.08 0.11 -98.20 0.56 -90.82 0.6 -90.16 表 6 各体系安全余度对比
Table 6. Comparison of safety margins among various systems
结构体系 三角刚架区体系 钢管混凝土立柱体系 带斜压杆式立柱体系 立柱节点部分简支体系 安全余度 1.08 1.10 1.22 1.07 表 7 各体系增加费用对比
Table 7. Comparison of additional costs across different systems
结构体系 三角刚架区体系 钢管混凝土立柱体系 带斜压杆式立柱体系 立柱节点部分简支体系 增加费用/万元 970.2 514.0 440.0 372.0 -
[1] 陈宝春, 韦建刚, 周俊, 等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报, 2017, 50(6): 50-61.CHEN Bao-chun, WEI Jian-gang, ZHOU Jun, et al. Application of concrete-filled steel tube arch bridges in China: Current status and prospects[J]. China Civil Engineering Journal, 2017, 50(6): 50-61. [2] 陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002 CHEN Bao-chun, LIU Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002 [3] 邵元, 孙宗光, 陈一飞. 拱桥吊杆等刚度设计及其动态响应分析[J]. 振动与冲击, 2018, 37(4): 219-225.SHAO Yuan, SUN Zong-guang, CHEN Yi-fei. A study on equal stiffness design of arch bridge suspenders and their dynamic response analysis[J]. Journal of Vibration and Shock, 2018, 37(4): 219-225. [4] 董晓博, 程鹏. 三山西大桥系杆病害研究及养护策略[J]. 公路, 2008, 53(4): 90-94.DONG Xiao-bo, CHENG Peng. Study on tie-bar disease of Sanshan Bridge and maintenance strategy[J]. Highway, 2008, 53(4): 90-94. [5] 张兆强, 姜山, 康孝先, 等. 大跨度飞燕式系杆拱桥系杆更换关键技术[J]. 施工技术, 2018, 47(22): 96-100.ZHANG Zhao-qiang, JIANG Shan, KANG Xiao-xian, et al. Tied-bar replacement construction technology of large-span flying-swallow-typed tied-arch bridge[J]. Construction Technology, 2018, 47(22): 96-100. [6] 李烈佩, 罗宇. 佛陈大桥系杆拱的加固及认识[J]. 广东公路交通, 2001, 27(4): 10-11.LI Lie-pei, LUO Yu. Strengthening and understanding of tied arch of Fochen Bridge[J]. Guangdong Highway Communications, 2001, 27(4): 10-11. [7] SHAO G T, JIN H, JIANG R N, et al. Dynamic response and robustness evaluation of cable-supported arch bridges subjected to cable breaking[J]. Shock and Vibration, 2021, 2021(1): 6689630. doi: 10.1155/2021/6689630 [8] STAROSSEK U. Typology of progressive collapse[J]. Engineering Structures, 2007, 29(9): 2302-2307. doi: 10.1016/j.engstruct.2006.11.025 [9] FAN B H, WANG S G, CHEN B C. Dynamic effect of tie-bar failure on through tied arch bridge[J]. Journal of Performance of Constructed Facilities, 2020, 34(5): 04020089. doi: 10.1061/(ASCE)CF.1943-5509.0001492 [10] 姜健, 李国强. 建筑钢结构抗连续性倒塌各国规范设计及分析[J]. 解放军理工大学学报(自然科学版), 2014(6): 540-551.JIANG Jian, LI Guo-qiang. Design method and analysis of national standards for steel structures against progressive collapse[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2014(6): 540-551. [11] 程东辉, 杨燕红. 基于拆除构件法的建筑结构抗连续倒塌研究进展[J]. 四川建筑科学研究, 2017, 43(6): 13-18.CHENG Dong-hui, YANG Yan-hong. A review on progressive collapse resistance research progress of structure based on alternate load path method[J]. Sichuan Building Science, 2017, 43(6): 13-18. [12] ABDELWAHED B. A review on building progressive collapse, survey and discussion[J]. Case Studies in Construction Materials, 2019, 11(6): e00264. [13] LU X, LI Y, YE L. Study on design method to resist progressive collapse for reinforced concrete frames[J]. Engineering Mechanics, 2008, 25(2): 150-157. [14] 吴庆雄, 罗健平, 魏小康, 等. 考虑吊杆断裂过程的下承式钢管混凝土拱桥动力分析[J]. 福州大学学报(自然科学版), 2023, 51(3): 409-416.WU Qing-xiong, LUO Jian-ping, WEI Xiao-kang, et al. Dynamic analysis of through concrete filled steel tubular arch bridges considering the dynamic effect of suspenders fracture[J]. Journal of Fuzhou University (Natural Science Edition), 2023, 51(3): 409-416. [15] 郑小博, 贺拴海. 桥梁整体安全余度及抗连续倒塌问题研究方法[J]. 公路交通科技, 2017, 34(12): 73-81.ZHENG Xiao-bo, HE Shuan-hai. A study method for redundancy and progressive collapse prevention of bridge system[J]. Journal of Highway and Transportation Research and Development, 2017, 34(12): 73-81. [16] CAI J G, XU Y X, ZHUANG L P, et al. Comparison of various procedures for progressive collapse analysis of cable-stayed bridges[J]. Journal of Zhejiang University — SCIENCE A, 2012, 13(5): 323-334. doi: 10.1631/jzus.A1100296 [17] MIAO F, GHOSN M. Reliability-based progressive collapse analysis of highway bridges[J]. Structural Safety, 2016, 63: 33-46. doi: 10.1016/j.strusafe.2016.05.004 [18] 陈宝春, 范冰辉, 余印根, 等. 钢管混凝土拱桥强健性设计[J]. 桥梁建设, 2016, 46(6): 88-93.CHEN Bao-chun, FAN Bing-hui, YU Yin-gen, et al. Robustness design of concrete-filled steel tube arch bridges[J]. Bridge Construction, 2016, 46(6): 88-93. [19] 范冰辉, 陈宝春, 吴庆雄. 考虑强健性的中、下承式拱桥技术状况评定[J]. 桥梁建设, 2018, 48(5): 64-68.FAN Bing-hui, CHEN Bao-chun, WU Qing-xiong. Technical condition evaluation of half-through and through arch bridges considering robustness[J]. Bridge Construction, 2018, 48(5): 64-68. [20] 陈康明, 吴庆雄, 罗健平, 等. 中、下承式拱桥悬吊桥面系强健性加固试验[J]. 交通运输工程学报, 2022, 22(6): 95-113. doi: 10.19818/j.cnki.1671-1637.2022.06.006 CHEN Kang-ming, WU Qing-xiong, LUO Jian-ping, et al. Test on robustness strengthening for suspended deck system in half-through and through arch bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 95-113. doi: 10.19818/j.cnki.1671-1637.2022.06.006 [21] 聂尚杰, 王铖铖, 刘琪, 等. 基于强健性的大跨径钢管混凝土刚架系杆拱桥设计[J]. 桥梁建设, 2023, 53(增1): 91-97.NIE Shang-jie, WANG Cheng-cheng, LIU Qi, et al. Design of long-span concrete-filled steel tube rigid-frame tied arch bridge based on robustness[J]. Bridge Construction, 2023, 53(S1): 91-97. [22] 刘剑锋, 李元兵, 张启伟. 拱桥钢绞线吊杆不对称断丝后的力学行为[J]. 同济大学学报(自然科学版), 2019, 47(4): 451-457.LIU Jian-feng, LI Yuan-bing, ZHANG Qi-wei. Mechanical behavior of damaged strand suspender with asymmetric broken wires in arch bridges[J]. Journal of Tongji University (Natural Science), 2019, 47(4): 451-457. [23] WANG X X, CHEN Z H, YU Y J, et al. Numerical and experimental study on loaded suspendome subjected to sudden cable failure[J]. Journal of Constructional Steel Research, 2017, 137: 358-371. doi: 10.1016/j.jcsr.2017.06.014 [24] WANG Y, ZHENG Y Q. Research on the damage evolution process of steel wire with pre-corroded defects in cable-stayed bridges[J]. Applied Sciences, 2019, 9(15): 3113. doi: 10.3390/app9153113 [25] 范冰辉, 孙绮, 陈宝春, 等. 考虑吊杆系统性失效的多跨下承式系杆拱桥强健性设计[J]. 交通运输工程学报, 2025, 25(2): 204-217. doi: 10.19818/j.cnki.1671-1637.2025.02.013 FAN Bing-hui, SUN Qi, CHEN Bao-chun, et al. Robustness design of multi-span through tied-arch bridge considering systemic hanger failure[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 204-217. doi: 10.19818/j.cnki.1671-1637.2025.02.013 [26] WU W Q, WANG H, ZHU Y J, et al. New hanger design approach of tied-arch bridge to enhance its robustness[J]. KSCE Journal of Civil Engineering, 2018, 22(11): 4547-4554. doi: 10.1007/s12205-018-1835-3 [27] 米曦亮, 李东. 中承式系杆拱桥结构优化设计[J]. 桥梁建设, 2010, 40(6): 58-62.MI Xi-liang, LI Dong. Optimization design of half-through tied arch bridge structure[J]. Bridge Construction, 2010, 40(6): 58-62. [28] 曹海顺, 鄢芳华. 中承式系杆拱桥结构体系分析[J]. 公路, 2020, 65(2): 125-129.CAO Hai-shun, YAN Fang-hua. Structural system analysis of half-through tied arch bridge[J]. Highway, 2020, 65(2): 125-129. [29] 栗勇, 米曦亮, 李东, 等. 邓家窑大桥总体设计[J]. 市政技术, 2010, 28(5): 51-52, 55.LI Yong, MI Xi-liang, LI Dong, et al. Overall design of Dengjiayao Bridge[J]. Municipal Engineering Technology, 2010, 28(5): 51-52, 55. [30] 李跃, 古松, 卜一之, 等. 新光大桥三角刚架施工过程模型试验及有限元分析[J]. 公路交通科技, 2008, 25(2): 94-100.LI Yue, GU Song, BU Yi-zhi, et al. Model test and FEM analysis on tri-angle frame of Xinguang Bridge[J]. Journal of Highway and Transportation Research and Development, 2008, 25(2): 94-100. [31] 刘鹤, 陈佑新, 黄立新. 莲沱特大桥拱上立柱及现浇横梁、盖梁施工[J]. 铁道标准设计, 1999, 43(7): 2-5.LIU He, CHEN You-xin, HUANG Li-xin. Construction of column on arch, cast-in-place beam and capping beam of Liantuo Bridge[J]. Railway Standard Design, 1999, 43(7): 2-5. [32] 韩林海, 陶忠, 刘威. 钢管混凝土结构——理论与实践[J]. 福州大学学报(自然科学版), 2001, 29(6): 24-34.HAN Lin-hai, TAO Zhong, LIU Wei. Concrete filled steel tubular structures from theory to practice[J]. Journal of Fuzhou University (Natural Sciences Edition), 2001, 29(6): 24-34. [33] 向桂兵, 谢肖礼. 新型上承式拱桥结构体系静力特性分析[J]. 施工技术(中英文), 2023, 52(16): 127-131.XIANG Gui-bing, XIE Xiao-li. Static characteristics analysis of new deck arch bridge structure system[J]. Construction Technology, 2023, 52(16): 127-131. [34] 广东省建设工程质量安全检测总站有限公司. 中山二桥桥梁检测报告[R]. 广州: 广东省建设工程质量安全检测总站有限公司, 2023.Guangdong Provincial Construction Engineering Quality Safety Testing Station Co., Ltd. Zhongshan Second Bridge inspection report[R]. Guangzhou: Guangdong Provincial Construction Engineering Quality Safety Testing Station Co., Ltd., 2023. [35] 李茂苗, 刘宇航, 方先慧, 等. 连续冲击下钢筋混凝土板的动态响应分析[J]. 新型建筑材料, 2024, 51(2): 28-32.LI Mao-miao, LIU Yu-hang, FANG Xian-hui, et al. Analysis of the dynamic response of reinforced concrete slabs under continuous impact[J]. New Building Materials, 2024, 51(2): 28-32. [36] RUST W, SCHWEIZERHOF K. Finite element limit load analysis of thin-walled structures by ANSYS (implicit), LS-DYNA (explicit) and in combination[J]. Thin-Walled Structures, 2003, 41(2/3): 227-244. [37] FAN B H, WANG S G, CHEN B C. Robustness assessment framework for through tied-arch bridge considering tie-bar failure[J]. Journal of Bridge Engineering, 2022, 27(5): 04022028. doi: 10.1061/(ASCE)BE.1943-5592.0001861 [38] 范冰辉. 下承式拉索系杆拱桥考虑强健性的断索效应计算与技术状况评定方法[D]. 福州: 福州大学, 2019.FAN Bing-hui. Calculation of broken-cable effect and technical condition evaluation method for through-type cable-stayed arch bridges considering robustness[D]. Fuzhou: Fuzhou University, 2019. -
下载: