留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞鸟式拱桥考虑系杆断索的防连续性垮塌设计

范冰辉 邹金岐 陈铿 陈宝春 陈康明

范冰辉, 邹金岐, 陈铿, 陈宝春, 陈康明. 飞鸟式拱桥考虑系杆断索的防连续性垮塌设计[J]. 交通运输工程学报, 2025, 25(5): 414-420. doi: 10.19818/j.cnki.1671-1637.2025.05.027
引用本文: 范冰辉, 邹金岐, 陈铿, 陈宝春, 陈康明. 飞鸟式拱桥考虑系杆断索的防连续性垮塌设计[J]. 交通运输工程学报, 2025, 25(5): 414-420. doi: 10.19818/j.cnki.1671-1637.2025.05.027
FAN Bing-hui, ZOU Jin-qi, CHEN Keng, CHEN Bao-chun, CHEN Kang-ming. Progressive collapse prevention design of fly-bird-type arch bridges considering tie bar failure[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 414-420. doi: 10.19818/j.cnki.1671-1637.2025.05.027
Citation: FAN Bing-hui, ZOU Jin-qi, CHEN Keng, CHEN Bao-chun, CHEN Kang-ming. Progressive collapse prevention design of fly-bird-type arch bridges considering tie bar failure[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 414-420. doi: 10.19818/j.cnki.1671-1637.2025.05.027

飞鸟式拱桥考虑系杆断索的防连续性垮塌设计

doi: 10.19818/j.cnki.1671-1637.2025.05.027
基金项目: 

国家自然科学基金项目 52078137

福建省自然科学基金项目 2024J01355

详细信息
    作者简介:

    范冰辉(1982-),男,福建永泰人,福州大学副教授,工学博士,从事桥梁评定与维护研究

    通讯作者:

    陈宝春(1958-),男,福建罗源人,福州大学教授,工学博士

  • 中图分类号: U448.22

Progressive collapse prevention design of fly-bird-type arch bridges considering tie bar failure

Funds: 

National Natural Science Foundation of China 52078137

Natural Science Foundation of Fujian Province 2024J01355

More Information
Article Text (Baidu Translation)
  • 摘要: 为提高飞鸟式拱桥在系杆断索下的防连续性垮塌能力,基于强健性设计的备用路径法,结合相关工程案例与研究,提出了三角刚架区、钢管混凝土立柱、带斜压杆式立柱及立柱节点部分简支体系等4种局部加强结构体系;建立LS-DYNA显式动力学断索模拟方法,并基于室内试验数据与仿真结果进行了对比分析和验证;采用该断索模拟方法,对4种结构体系在系杆断索下的动力响应进行仿真,分别对主跨和边跨构件的内力极值进行了比较,并对结构承载力进行验算。研究结果表明:LS-DYNA动力分析法误差较小,适用于系杆拱桥中水平系杆断索的动力响应模拟分析;4种结构体系均有效降低了系杆断索下剩余结构的动力响应,其中钢管混凝土立柱体系对改善边拱肋弯矩和纵梁弯矩的动力响应最为显著,而立柱节点部分简支体系则最有利于降低主拱肋和立柱弯矩的动力响应;将钢管混凝土立柱体系应用于新建飞鸟式拱桥,从结构动力性能和外观协调性上综合效益最佳;将立柱节点部分简支体系应用于既有飞鸟式拱桥的改造,既能改善结构动力性能又能有效防止节点开裂,且施工成本低廉、简便易行,经济性最好,从而为该桥型的强健性设计和改造提供了各自适用、可行的途径。

     

  • 图  1  堰江东桥总体布置(单位:mm)

    Figure  1.  General arrangement of Yanjiang East Bridge (unit: mm)

    图  2  飞鸟式拱桥三角刚架区体系

    Figure  2.  Triangular stiffener zones system of fly-bird-type arch bridge

    图  3  钢管混凝土立柱体系(单位: mm)

    Figure  3.  Steel-concrete composite columns system (unit: mm)

    图  4  带斜压杆式立柱体系

    Figure  4.  Columns system with diagonal compression bars

    图  5  立柱节点部分简支体系

    Figure  5.  Partially simply supported column-node system

    图  6  系杆破断LS-DYNA模拟过程

    Figure  6.  LS-DYNA simulation process for tie bar breakage

    图  7  试验模型

    Figure  7.  Test model

    图  8  不同工况下拱墩水平位移动力响应

    Figure  8.  Dynamic responses of horizontal displacement of arch abutment under different working conditions

    图  9  不同工况下剩余系杆轴力动力响应

    Figure  9.  Dynamic responses of residual tie bar axial force under different working conditions

    图  10  不同工况下拱肋应力动力响应

    Figure  10.  Stress dynamic response of arch rib under different working conditions

    图  11  主拱肋内力动力响应

    Figure  11.  Dynamic response of internal forces in main arch rib

    图  12  边跨构件内力动力响应

    Figure  12.  Dynamic responses of internal force of members in side span

    表  1  非线性本构材料损伤参数

    Table  1.   Damage parameters of nonlinear constitutive materials

    参数 *MAT_172 *MAT_003 *MAT_174 *MAT_096
    密度/(kg·m-3) 2 600 7 500 2 600 2 600
    初始卸载弹性模量/GPa 30.0 200.0 34.5 30.0
    泊松比 0.2 0.2 0.2 0.2
    屈服强度/MPa 20.1 400.0 20.1 20.1
    极限强度/MPa 2.01 620.0 2.01 2.01
    达到抗压强度时应变 0.002 0 0.200 0 0.002 2 0.002 2
    下载: 导出CSV

    表  2  下游侧动力响应的试验与模拟数据对比

    Table  2.   Comparison of experimental and simulation data of dynamic response on the downstream side

    指标 工况Ⅰ 工况Ⅱ 工况Ⅲ 工况Ⅳ
    实测下游 模拟下游 实测与模拟之比 实测下游 模拟下游 实测与模拟之比 实测下游 模拟下游 实测与模拟之比 实测下游 模拟下游 实测与模拟之比
    拱墩水平位移/mm 12.23 13.15 0.93 25.20 26.38 0.96 28.65 28.05 1.02 105.22 110.20 0.95
    拱肋应力/MPa 22.70 23.70 0.96 53.56 57.30 0.93 55.24 54.74 1.01 212.71 235.00 0.91
    系杆轴力/MN 24.83 24.87 0.99 37.69 42.75 0.88 56.48 57.68 0.98
    下载: 导出CSV

    表  3  上游侧动力响应的试验与模拟数据对比

    Table  3.   Comparison of experimental and simulation data of dynamic response on the upstream side

    指标 工况Ⅰ 工况Ⅱ 工况Ⅲ 工况Ⅳ
    实测上游 模拟上游 实测与模拟之比 实测上游 模拟上游 实测与模拟之比 实测上游 模拟上游 实测与模拟之比 实测上游 模拟上游 实测与模拟之比
    拱墩水平位移/mm 3.39 3.39 1.00 26.39 25.20 1.04 9.94 9.77 1.02 108.98 106.00 1.03
    拱肋应力/MPa 5.70 5.94 0.96 47.20 47.80 0.99 16.88 15.20 1.10 219.00 226.00 0.97
    系杆轴力/MN 13.97 13.90 1.07 39.04 44.01 0.89
    下载: 导出CSV

    表  4  原结构动力响应极值

    Table  4.   Dynamic extreme responses of original structure

    指标 主拱肋轴力/MN 立柱轴力/MN 边拱肋轴力/MN 纵梁轴力/MN 主拱肋弯矩/(MN·m) 立柱弯矩/(MN·m) 边拱肋弯矩/(MN·m) 纵梁弯矩/(MN·m)
    数值 14.59 -2.81 -7.69 1.72 -1.77 1.17 12.9 6.1
    下载: 导出CSV

    表  5  全部动力响应指标对比

    Table  5.   Comparison of overall dynamic response indicators

    分析指标 三角刚架区体系 钢管混凝土立柱体系 带斜压杆式立柱体系 立柱节点部分简支体系
    数值 变化幅度/% 数值 变化幅度/% 数值 变化幅度/% 数值 变化幅度/%
    主拱肋轴力/MN -11.98 -18.10 -14.38 -1.40 -14.56 -0.21 -14.57 -0.34
    立柱轴力/MN -2.25 -19.90 -2.97 -15.70 -2.62 -6.70 -2.67 -5.10
    边拱肋轴力/MN -4.33 -43.70 -3.50 -56.70 -2.78 -82.90 -6.57 -14.60
    纵梁轴力/MN 1.13 -34.30 -1.58 -83.10 -1.63 -83.70 1.45 -15.70
    主拱肋弯矩/(MN·m) -1.23 -30.51 -1.42 -19.77 -1.44 -18.64 -1.03 -41.80
    立柱弯矩/(MN·m) 0.76 -35.04 1.45 23.93 0.89 -23.93 0.37 -68.38
    边拱肋弯矩/(MN·m) 1.35 -89.53 1.07 -91.71 2.17 -83.18 12.13 -5.97
    纵梁弯矩/(MN·m) 0.30 -95.08 0.11 -98.20 0.56 -90.82 0.6 -90.16
    下载: 导出CSV

    表  6  各体系安全余度对比

    Table  6.   Comparison of safety margins among various systems

    结构体系 三角刚架区体系 钢管混凝土立柱体系 带斜压杆式立柱体系 立柱节点部分简支体系
    安全余度 1.08 1.10 1.22 1.07
    下载: 导出CSV

    表  7  各体系增加费用对比

    Table  7.   Comparison of additional costs across different systems

    结构体系 三角刚架区体系 钢管混凝土立柱体系 带斜压杆式立柱体系 立柱节点部分简支体系
    增加费用/万元 970.2 514.0 440.0 372.0
    下载: 导出CSV
  • [1] 陈宝春, 韦建刚, 周俊, 等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报, 2017, 50(6): 50-61.

    CHEN Bao-chun, WEI Jian-gang, ZHOU Jun, et al. Application of concrete-filled steel tube arch bridges in China: Current status and prospects[J]. China Civil Engineering Journal, 2017, 50(6): 50-61.
    [2] 陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002

    CHEN Bao-chun, LIU Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002
    [3] 邵元, 孙宗光, 陈一飞. 拱桥吊杆等刚度设计及其动态响应分析[J]. 振动与冲击, 2018, 37(4): 219-225.

    SHAO Yuan, SUN Zong-guang, CHEN Yi-fei. A study on equal stiffness design of arch bridge suspenders and their dynamic response analysis[J]. Journal of Vibration and Shock, 2018, 37(4): 219-225.
    [4] 董晓博, 程鹏. 三山西大桥系杆病害研究及养护策略[J]. 公路, 2008, 53(4): 90-94.

    DONG Xiao-bo, CHENG Peng. Study on tie-bar disease of Sanshan Bridge and maintenance strategy[J]. Highway, 2008, 53(4): 90-94.
    [5] 张兆强, 姜山, 康孝先, 等. 大跨度飞燕式系杆拱桥系杆更换关键技术[J]. 施工技术, 2018, 47(22): 96-100.

    ZHANG Zhao-qiang, JIANG Shan, KANG Xiao-xian, et al. Tied-bar replacement construction technology of large-span flying-swallow-typed tied-arch bridge[J]. Construction Technology, 2018, 47(22): 96-100.
    [6] 李烈佩, 罗宇. 佛陈大桥系杆拱的加固及认识[J]. 广东公路交通, 2001, 27(4): 10-11.

    LI Lie-pei, LUO Yu. Strengthening and understanding of tied arch of Fochen Bridge[J]. Guangdong Highway Communications, 2001, 27(4): 10-11.
    [7] SHAO G T, JIN H, JIANG R N, et al. Dynamic response and robustness evaluation of cable-supported arch bridges subjected to cable breaking[J]. Shock and Vibration, 2021, 2021(1): 6689630. doi: 10.1155/2021/6689630
    [8] STAROSSEK U. Typology of progressive collapse[J]. Engineering Structures, 2007, 29(9): 2302-2307. doi: 10.1016/j.engstruct.2006.11.025
    [9] FAN B H, WANG S G, CHEN B C. Dynamic effect of tie-bar failure on through tied arch bridge[J]. Journal of Performance of Constructed Facilities, 2020, 34(5): 04020089. doi: 10.1061/(ASCE)CF.1943-5509.0001492
    [10] 姜健, 李国强. 建筑钢结构抗连续性倒塌各国规范设计及分析[J]. 解放军理工大学学报(自然科学版), 2014(6): 540-551.

    JIANG Jian, LI Guo-qiang. Design method and analysis of national standards for steel structures against progressive collapse[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2014(6): 540-551.
    [11] 程东辉, 杨燕红. 基于拆除构件法的建筑结构抗连续倒塌研究进展[J]. 四川建筑科学研究, 2017, 43(6): 13-18.

    CHENG Dong-hui, YANG Yan-hong. A review on progressive collapse resistance research progress of structure based on alternate load path method[J]. Sichuan Building Science, 2017, 43(6): 13-18.
    [12] ABDELWAHED B. A review on building progressive collapse, survey and discussion[J]. Case Studies in Construction Materials, 2019, 11(6): e00264.
    [13] LU X, LI Y, YE L. Study on design method to resist progressive collapse for reinforced concrete frames[J]. Engineering Mechanics, 2008, 25(2): 150-157.
    [14] 吴庆雄, 罗健平, 魏小康, 等. 考虑吊杆断裂过程的下承式钢管混凝土拱桥动力分析[J]. 福州大学学报(自然科学版), 2023, 51(3): 409-416.

    WU Qing-xiong, LUO Jian-ping, WEI Xiao-kang, et al. Dynamic analysis of through concrete filled steel tubular arch bridges considering the dynamic effect of suspenders fracture[J]. Journal of Fuzhou University (Natural Science Edition), 2023, 51(3): 409-416.
    [15] 郑小博, 贺拴海. 桥梁整体安全余度及抗连续倒塌问题研究方法[J]. 公路交通科技, 2017, 34(12): 73-81.

    ZHENG Xiao-bo, HE Shuan-hai. A study method for redundancy and progressive collapse prevention of bridge system[J]. Journal of Highway and Transportation Research and Development, 2017, 34(12): 73-81.
    [16] CAI J G, XU Y X, ZHUANG L P, et al. Comparison of various procedures for progressive collapse analysis of cable-stayed bridges[J]. Journal of Zhejiang University — SCIENCE A, 2012, 13(5): 323-334. doi: 10.1631/jzus.A1100296
    [17] MIAO F, GHOSN M. Reliability-based progressive collapse analysis of highway bridges[J]. Structural Safety, 2016, 63: 33-46. doi: 10.1016/j.strusafe.2016.05.004
    [18] 陈宝春, 范冰辉, 余印根, 等. 钢管混凝土拱桥强健性设计[J]. 桥梁建设, 2016, 46(6): 88-93.

    CHEN Bao-chun, FAN Bing-hui, YU Yin-gen, et al. Robustness design of concrete-filled steel tube arch bridges[J]. Bridge Construction, 2016, 46(6): 88-93.
    [19] 范冰辉, 陈宝春, 吴庆雄. 考虑强健性的中、下承式拱桥技术状况评定[J]. 桥梁建设, 2018, 48(5): 64-68.

    FAN Bing-hui, CHEN Bao-chun, WU Qing-xiong. Technical condition evaluation of half-through and through arch bridges considering robustness[J]. Bridge Construction, 2018, 48(5): 64-68.
    [20] 陈康明, 吴庆雄, 罗健平, 等. 中、下承式拱桥悬吊桥面系强健性加固试验[J]. 交通运输工程学报, 2022, 22(6): 95-113. doi: 10.19818/j.cnki.1671-1637.2022.06.006

    CHEN Kang-ming, WU Qing-xiong, LUO Jian-ping, et al. Test on robustness strengthening for suspended deck system in half-through and through arch bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 95-113. doi: 10.19818/j.cnki.1671-1637.2022.06.006
    [21] 聂尚杰, 王铖铖, 刘琪, 等. 基于强健性的大跨径钢管混凝土刚架系杆拱桥设计[J]. 桥梁建设, 2023, 53(增1): 91-97.

    NIE Shang-jie, WANG Cheng-cheng, LIU Qi, et al. Design of long-span concrete-filled steel tube rigid-frame tied arch bridge based on robustness[J]. Bridge Construction, 2023, 53(S1): 91-97.
    [22] 刘剑锋, 李元兵, 张启伟. 拱桥钢绞线吊杆不对称断丝后的力学行为[J]. 同济大学学报(自然科学版), 2019, 47(4): 451-457.

    LIU Jian-feng, LI Yuan-bing, ZHANG Qi-wei. Mechanical behavior of damaged strand suspender with asymmetric broken wires in arch bridges[J]. Journal of Tongji University (Natural Science), 2019, 47(4): 451-457.
    [23] WANG X X, CHEN Z H, YU Y J, et al. Numerical and experimental study on loaded suspendome subjected to sudden cable failure[J]. Journal of Constructional Steel Research, 2017, 137: 358-371. doi: 10.1016/j.jcsr.2017.06.014
    [24] WANG Y, ZHENG Y Q. Research on the damage evolution process of steel wire with pre-corroded defects in cable-stayed bridges[J]. Applied Sciences, 2019, 9(15): 3113. doi: 10.3390/app9153113
    [25] 范冰辉, 孙绮, 陈宝春, 等. 考虑吊杆系统性失效的多跨下承式系杆拱桥强健性设计[J]. 交通运输工程学报, 2025, 25(2): 204-217. doi: 10.19818/j.cnki.1671-1637.2025.02.013

    FAN Bing-hui, SUN Qi, CHEN Bao-chun, et al. Robustness design of multi-span through tied-arch bridge considering systemic hanger failure[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 204-217. doi: 10.19818/j.cnki.1671-1637.2025.02.013
    [26] WU W Q, WANG H, ZHU Y J, et al. New hanger design approach of tied-arch bridge to enhance its robustness[J]. KSCE Journal of Civil Engineering, 2018, 22(11): 4547-4554. doi: 10.1007/s12205-018-1835-3
    [27] 米曦亮, 李东. 中承式系杆拱桥结构优化设计[J]. 桥梁建设, 2010, 40(6): 58-62.

    MI Xi-liang, LI Dong. Optimization design of half-through tied arch bridge structure[J]. Bridge Construction, 2010, 40(6): 58-62.
    [28] 曹海顺, 鄢芳华. 中承式系杆拱桥结构体系分析[J]. 公路, 2020, 65(2): 125-129.

    CAO Hai-shun, YAN Fang-hua. Structural system analysis of half-through tied arch bridge[J]. Highway, 2020, 65(2): 125-129.
    [29] 栗勇, 米曦亮, 李东, 等. 邓家窑大桥总体设计[J]. 市政技术, 2010, 28(5): 51-52, 55.

    LI Yong, MI Xi-liang, LI Dong, et al. Overall design of Dengjiayao Bridge[J]. Municipal Engineering Technology, 2010, 28(5): 51-52, 55.
    [30] 李跃, 古松, 卜一之, 等. 新光大桥三角刚架施工过程模型试验及有限元分析[J]. 公路交通科技, 2008, 25(2): 94-100.

    LI Yue, GU Song, BU Yi-zhi, et al. Model test and FEM analysis on tri-angle frame of Xinguang Bridge[J]. Journal of Highway and Transportation Research and Development, 2008, 25(2): 94-100.
    [31] 刘鹤, 陈佑新, 黄立新. 莲沱特大桥拱上立柱及现浇横梁、盖梁施工[J]. 铁道标准设计, 1999, 43(7): 2-5.

    LIU He, CHEN You-xin, HUANG Li-xin. Construction of column on arch, cast-in-place beam and capping beam of Liantuo Bridge[J]. Railway Standard Design, 1999, 43(7): 2-5.
    [32] 韩林海, 陶忠, 刘威. 钢管混凝土结构——理论与实践[J]. 福州大学学报(自然科学版), 2001, 29(6): 24-34.

    HAN Lin-hai, TAO Zhong, LIU Wei. Concrete filled steel tubular structures from theory to practice[J]. Journal of Fuzhou University (Natural Sciences Edition), 2001, 29(6): 24-34.
    [33] 向桂兵, 谢肖礼. 新型上承式拱桥结构体系静力特性分析[J]. 施工技术(中英文), 2023, 52(16): 127-131.

    XIANG Gui-bing, XIE Xiao-li. Static characteristics analysis of new deck arch bridge structure system[J]. Construction Technology, 2023, 52(16): 127-131.
    [34] 广东省建设工程质量安全检测总站有限公司. 中山二桥桥梁检测报告[R]. 广州: 广东省建设工程质量安全检测总站有限公司, 2023.

    Guangdong Provincial Construction Engineering Quality Safety Testing Station Co., Ltd. Zhongshan Second Bridge inspection report[R]. Guangzhou: Guangdong Provincial Construction Engineering Quality Safety Testing Station Co., Ltd., 2023.
    [35] 李茂苗, 刘宇航, 方先慧, 等. 连续冲击下钢筋混凝土板的动态响应分析[J]. 新型建筑材料, 2024, 51(2): 28-32.

    LI Mao-miao, LIU Yu-hang, FANG Xian-hui, et al. Analysis of the dynamic response of reinforced concrete slabs under continuous impact[J]. New Building Materials, 2024, 51(2): 28-32.
    [36] RUST W, SCHWEIZERHOF K. Finite element limit load analysis of thin-walled structures by ANSYS (implicit), LS-DYNA (explicit) and in combination[J]. Thin-Walled Structures, 2003, 41(2/3): 227-244.
    [37] FAN B H, WANG S G, CHEN B C. Robustness assessment framework for through tied-arch bridge considering tie-bar failure[J]. Journal of Bridge Engineering, 2022, 27(5): 04022028. doi: 10.1061/(ASCE)BE.1943-5592.0001861
    [38] 范冰辉. 下承式拉索系杆拱桥考虑强健性的断索效应计算与技术状况评定方法[D]. 福州: 福州大学, 2019.

    FAN Bing-hui. Calculation of broken-cable effect and technical condition evaluation method for through-type cable-stayed arch bridges considering robustness[D]. Fuzhou: Fuzhou University, 2019.
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  21
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-28
  • 录用日期:  2025-08-25
  • 修回日期:  2025-06-19
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回