Review on aerodynamic noise and noise reduction technologies of automotive heating, ventilation, and air conditioning system
Article Text (Baidu Translation)
-
摘要: 针对汽车供暖通风与空气调节系统的气动噪声问题, 从行业基准管道、实体风道、空调系统自由场运行和空调系统车内运行4个方面, 介绍了当前车载空调气动噪声的研究现状和研究成果; 分析了空调系统气动噪声源和产生机理; 针对空调系统的关键部件, 探讨了其降噪措施; 展望了未来的研究方向和发展趋势。结果表明: 汽车空调噪声的主要声源为表面偶极子声源, 主要分布在风机叶轮、蜗壳、扩散段、风道、风门以及出口格栅处; 风机所产生的噪声包括叶轮旋转引起的单频噪声以及由于叶片旋转导致气流与周围蜗壳等固体表面撞击形成的宽频噪声, 可通过叶轮和蜗舌结构优化、吸声材料铺设、主动降噪技术等方式进行噪声控制; 除了上游风机箱体产生的传播噪声, 风道自身也会产生气动噪声, 其主要由内部弯角和截面变化等产生流动分离或涡流造成, 可通过优化风道构型以平顺气流和减小局部压力损失、使用吸声材料或结构提升管道传递损失、采用主动降噪技术抵消原有噪声, 以进行风道降噪; 出风口处气流撞击风门和格栅, 产生噪声并直接向人耳处辐射, 调整出风口形状、设计仿生格栅以及在出风口布置主动降噪装置均有助于噪声降低; 此外还可通过调整整车内饰材料以获得更佳的声环境, 提升听感体验。Abstract: Aiming at the aerodynamic noise problem of the automobile heating, ventilation, and air conditioning system (HVAC), the current research status and research achievements were introduced from the four aspects, including the benchmark duct, the actual ventilation duct, the HVAC system operated in a free field and the system operated inside an automobile. The aerodynamic noise sources and generation mechanisms of the HVAC system were analyzed. The noise reduction measures were discussed for the key components of the HVAC system. The future research directions and development trends were proposed. The results indicated that the main sound sources of noise in the automobile HVAC system are surface dipole sound sources. These sound sources are mainly distributed at the blower impeller, volute, diffuser section, ventilation duct, air flap, and outlet grille. The noise generated by the blower is composed of tonal noise caused by the impeller rotation and broadband noise caused by the interactions between the airflow and surrounding solid surfaces such as the volute. Noise control is achieved through structural optimizations of the impeller and volute tongue, installation of sound-absorbing materials, and implementation of active noise control (ANC) technology. In addition to the propagated noise generated by the upstream blower housing, aerodynamic noise is also generated by the ventilation duct itself. This noise is mainly caused by flow separation or vortex generation induced by internal bends and cross-section variations. Ventilation duct noise reduction is achieved by optimization of the duct configuration to smooth the airflow and reduce local pressure loss, by use of sound-absorbing materials or structures to increase duct transmission loss, and by application of ANC technology to cancel the original noise. At the outlet, noise is generated by the airflow impacting the air flap and grille, and direct radiation toward the human ear is produced. Noise reduction is achieved by adjustment of the outlet shape, by design of bionic grilles, and by installation of ANC devices at the outlet. In addition, a better acoustic environment is obtained by adjustment of the interior materials of the vehicle cabin, and auditory comfort is improved.
-
-
[1] MASRI J, AMER M, SALMAN S, et al. A survey of modern vehicle noise, vibration, and harshness: A state-of-the-art[J]. Ain Shams Engineering Journal, 2024, 15: 1-20. [2] 刘小华, 黄伟, 莫崇卫, 等. 某纯电动汽车空调系统噪声分析与优化[J]. 汽车零部件, 2019(9): 24-28.LIU Xiao-hua, HUANG Wei, MO Chong-wei, et al. Analysis and optimization of air conditioning system noise in a battery electric vehicle[J]. Automobile Parts, 2019(9): 24-28. [3] 黄毅, 王伟江, 秦望, 等. 汽车后空调顶棚风管气动噪声数值仿真分析及优化[J]. 振动与冲击, 2023, 42(1): 326-334.HUANG Yi, WANG Wei-jiang, QIN Wang, et al. Numerical simulation analysis and optimization of aerodynamic noise of roof duct of car rear air conditioner[J]. Journal of Vibration and Shock, 2023, 42(1): 326-334. [4] MIKEDIS K. Prediction of aerodynamically induced noise in automotive HVAC systems. Athens: National Technical University of Athens, 2023. [5] AYAR A, AMBS R, CAPELLMANN C, et al. Prediction of flow-induced noise in automotive HVAC systems using a combined CFD/CA approach[J]. SAE Transactions, 2005, 114(6): 550-564. [6] 王占国, 程杰, 何闯. 汽车噪声国标与欧标法规差异分析[J]. 汽车实用技术, 2020, 18: 233-235.WANG Zhan-guo, CHENG Jie, HE Chuang. Analysis on the difference between national standard and European standard of automobile noise[J]. Automobile Applied Technology, 2020, 18: 233-235. [7] JAEGER A, DECKER F, HARTMANN M, et al. Numerical and experimental investigations of the noise generated by a flap in a simplified HVAC duct//AIAA. 14th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2008: 1-17. [8] CARO S, DETANDT Y, MANERA J, et al. Validation of a new hybrid CAA strategy and application to the noise generated by a flap in a simplified HVAC duct//AIAA. 15th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2009: 1-14. [9] WIART C C D, GEUZAINE P, DETANDT Y, et al. Validation of a hybrid CAA method: Noise generated by a flap in a simplified HVAC duct//AIAA. 16th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2010: 1-16. [10] KIERKEGAARD A, WEST A, CARO S. HVAC noise simulations using direct and hybrid methods//AIAA. 22nd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2016: 1-9. [11] 卿宏军, 刘杰. 汽车空调风道气动噪声仿真方法研究[J]. 汽车工程, 2018, 40(11): 1370-1375.QING Hong-jun, LIU Jie. An investigation into simulation method of aerodynamic noise in vehicle HVAC ducts[J]. Automotive Engineering, 2018, 40(11): 1370-1375. [12] GARCKE J, IZA-TERAN R, GSCHEIDLE C, et al. Analysis of turbulent flow data based on a spectral basis representation//NAFEMS. 2019 NAFEMS World Congress. Hamilton: NAFEMS, 2019: 1-16. [13] MARTINEZ-LERA P, HALLEZ R, TOURNOUR M, et al. Improved simulation technique for predicting the noise radiated by a flap in a simplified HVAC duct//JSAE. 2011 JSAE Annual Congress. Tokyo: JSAE, 2011: 1-5. [14] MARTÍNEZ-LERA P, HALLEZ R, BERIOT H. Computation of sound in a simplified HVAC duct based on aerodynamic pressure//AIAA. 18th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2012: 1-10. [15] HALLEZ R, BOYLE M, MARTINEZ P. Towards improved automotive cabin comfort: Application of the aeroacoustic analogy to HVAC flow-induced noise and side window flow-induced vibrations//NAFEMS. 2013 NAFEMS World Congress. Hamilton: NAFEM, 2013: 1-4. [16] ALLAN M, DARBYSHIRE O. Comparison of LES and stochastic source generation methods for aero- and hydro-acoustic design guidance//AIAA. 20th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2014: 1-19. [17] 许飞, 贺尔铭. 飞机环控管道阀门气动噪声产生机理及其影响因素分析[J]. 西北工业大学学报, 2017, 35(4): 618-613.XU Fei, HE Er-ming. Simulation of flow-induced noise generation on orifice plates in an aircraft climate control system[J]. Journal of Northwestern Polytechnical University, 2017, 35(4): 618-613. [18] AISSAOUI A, TUPAKE R S, BIJWE V, et al. Flow-induced noise optimization of SUV HVAC system using a Lattice Boltzmann method[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2015, 8(3): 1053-1062. doi: 10.4271/2015-01-2323 [19] 程勉宏, 刘刚. 汽车空调风道设计对车内噪声的影响[J]. 沈阳航空工业学院学报, 2005, 22(4): 37-39.CHENG Mian-hong, LIU Gang. Effect of air-conditioning duct design on cabin inside noise[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2005, 22(4): 37-39. [20] DETRY S, MANERA J, DETANDT Y, et al. Aero-acoustic predictions of industrial dashboard HVAC systems[J]. Noise Control Engineering Journal, 2011, 59(2): 177-185. doi: 10.3397/1.3545796 [21] BENNOUNA S, MOREAU S, VILLE J M, et al. Aeraulic and aeroacoustic experimental characterization of academic and industrial HVAC flaps//SAE International. SAE 2016 World Congress and Exhibition, Detroit: SAE International, 2016: 1-9. [22] PÉROT F, MESKINE M, LEGOFF V, et al. HVAC noise predictions using a Lattice Boltzmann method//AIAA. 19th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2013: 1-14. [23] HEKMATI A, RICOT D, DRUAULT P. Aeroacoustic analysis of the automotive ventilation outlets using extended proper orthogonal decomposition//AIAA. 15th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2009: 1-11. [24] RAVICHANDRAN A, LOGDESSER A, PELLER N, et al. Acoustic resonances in an automotive HVAC outlet[J]. Journal of Sound and Vibration, 2024, 569: 1-20. [25] BRUNGART T A, LAUCHLE G C, TICHY J. Case history: Acoustic diagnostics of an automotive HVAC system[J]. Noise Control Engineering Journal, 1992, 39(1): 31-42. doi: 10.3397/1.2827817 [26] 李启良, 钟立元, 王毅刚, 等. 汽车空调气动噪声数值与试验研究[J]. 同济大学学报(自然科学版), 2016, 44(4): 620-624.LI Qi-liang, ZHONG Li-yuan, WANG Yi-gang, et al. Experimental and numerical investigations of aerodynamic noise for automotive air-conditioning[J]. Journal of Tongji University (Natural Science), 2016, 44(4): 620-624. [27] BODE F, JOLDOS T, SIRBU G M, et al. Impact of realistic boundary conditions on CFD simulations: A case study of vehicle ventilation[J]. Building and Environment, 2025, 267: 1-14. [28] LEE D, lEE M H, Ih K D, et al. Aeroacoustics predictions of automotive HVAC systems//SAE International. SAE 2010 World Congress and Exhibition, Detroit: SAE International, 2010: 1-13. [29] 王华伟, 朱帅, 王博, 等. 汽车空调风道风量分配和气动噪声优化研究[J]. 机械设计与制造, 2024, 398(4): 346-350.WANG Hua-wei, ZHU Shuai, WANG Bo, et al. Research on air distribution and aerodynamic noise optimization of automotive air conditioning duct[J]. Machinery Design and Manufacture, 2024, 398(4): 346-350. [30] HE Jia-hao. Design and optimization of automotive air conditioning duct based on CFD algorithm[J]. Journal of Physics: Conference Series, 2022, 2386: 1-8. [31] 赵玉垒, 赵伟丰, 刘二宝, 等. 汽车空调风道和出风口的气动噪声分析[J]. 汽车工程师, 2018(10): 32-35.ZHAO Yu-lei, ZHAO Wei-feng, LIU Er-bao, et al. Analysis of aerodynamic noise in duct and outlet of automobile air conditioner[J]. Automotive Engineer, 2018(10): 32-35. [32] 洪小锋, 莫易敏, 毛万鑫, 等. 汽车空调风道噪声仿真与优化[J]. 数字制造科学, 2023, 23(1): 15-20.HONG Xiao-feng, MO Yi-min, MAO Wan-xin, et al. Noise simulation and optimization design of automobile air-conditioning duct[J]. Digital Manufacture Science, 2023, 23(1): 15-20. [33] 梁晨, 秦傲, 赵云龙, 等. 汽车暖通空调气动噪声仿真[J]. 液压与气动, 2022, 46(8): 108-115.LIANG Chen, QIN Ao, ZHAO Yun-long, et al. Aerodynamic noise simulation of automobile heating ventilation air conditioner[J]. Chinese Hydraulics and Pneumatics, 2022, 46(8): 108-115. [34] 刘猛洪. 汽车空调鼓风机倾斜蜗舌流场及噪声研究分析[J]. 机械研究与应用, 2023, 36(183): 144-146.LIU Meng-hong. Mechanical research and application[J]. Mechanical Research and Application, 2023, 36(183): 144-146. [35] LI Ming, GUO Li-yu, GUO Qin. Aeroacoustic noise analysis of automobile air conditioning system//IFEESM. 3rd International Forum on Energy, Environment Science and Materials. Paris: Atlantis Press, 2018: 965-972. [36] KOO H M. An experimental study of the noise and the performance of cross-flow fans in room air-conditioning systems[J]. Noise Control Engineering Journal, 2000, 48(2): 41-47. doi: 10.3397/1.2827973 [37] 沈思思, 王洪强, 顾国疆, 等. 汽车空调系统噪声源识别的试验研究[J]. 制冷与空调, 2020, 20(4): 42-46.SHEN Si-si, WANG Hong-qiang, GU Guo-jiang, et al. Experimental research on noise source identification of vehicle air-conditioning system[J]. Refrigeration and Air-conditioning, 2020, 20(4): 42-46. [38] MADANI V, ZIADA S. Aeroacoustic characteristics of automotive HVAC systems//SAE International. SAE 2008 World Congress and Exhibit. Detroit: SAE International, 2008: 1-11. [39] 张凡. 汽车空调鼓风机气动噪声传递特性分析及降噪优化. 成都: 西南交通大学, 2019.ZHANG Fan. Analysis of aerodynamic noise transmission characteristics and noise optimization of automotive air-conditioner blower. Chengdu: Southwest Jiaotong University, 2019. [40] LEE D, PEROT F, IH K D, et al. Prediction of flow-induced noise of automotive HVAC systems//SAE International. SAE 2011 World Congress and Exhibit. Detroit: SAE International, 2011: 1-9. [41] HAMMAD N. Influence of air conditioning characteristics on vehicle interior noise[J]. International Journal of Vehicle Structures & Systems, 2010, 2(2): 80-86. [42] 邹春一, 杨志刚, 李启良, 等. 整车环境下汽车空调系统气动噪声分析[J]. 声学技术, 2018, 37(1): 71-76.ZOU Chun-yi, YANG Zhi-gang, LI Qi-liang, et al. Analysis of aerodynamic noise from HVAC in the vehicle[J]. Technical Acoustics, 2018, 37(1): 71-76. [43] 黄毅, 王伟江, 秦望, 等. 数值仿真生成的汽车后空调气动噪声预测及评价[J]. 应用声学, 2023, 42(2): 282-291.HUANG Yi, WANG Wei-jiang, QIN Wang, et al. Prediction and evaluation of aerodynamic noise of automobile rear air conditioner based on simulation generation[J]. Journal of Applied Acoustics, 2023, 42(2): 282-291. [44] MAVURI S P, WATKINS S, WANG X, et al. An investigation and bench marking of vehicle HVAC cabin noise//SAE International. 2008 SAE World Congress. Detroit: SAE International, 2008: 1-13. [45] 束磊. 汽车用鼓风机振动噪声的优化设计. 长春: 吉林大学, 2019.SHU Lei. Optimization design of vibration and noise for automobile blower. Changchun: Jilin University, 2019. [46] 凌志伟. 汽车空调HVAC系统的气动噪声与出风量协同优化设计. 重庆: 重庆理工大学, 2021.LING Zhi-wei. Collaborative optimization design of aerodynamic noise and air output in automobile air-conditioning HVAC system. Chongqing: Chongqing University of Technology, 2021. [47] 王英洋. 汽车空调进气风道和鼓风机数值模拟及流动噪声分析. 武汉: 长江大学, 2017.WANG Ying-yang. A numerical simulation and flow noise analysis of intake air duct and blower of automobile air conditioner. Wuhan: Yangtze University, 2017. [48] 王俊帅. 汽车HVAC系统气动噪声特性及降噪方法研究. 长春: 吉林大学, 2017.WANG Jun-shuai. Study on aerodynamic noise characteristics and noise reduction methods of automotive HVAC systems. Changchun: Jilin University, 2017. [49] BENNOUNA S, MATHARAN T, CHERIAUX O. Automotive HVAC noise reduction//SAE International. SAE 2018 World Congress and Exhibit. Detroit: SAE International, 2018: 1-5. [50] SINGH S, MOHANTY A R. HVAC noise control using natural materials to improve vehicle interior sound quality[J]. Applied Acoustics, 2018, 140: 100-109. doi: 10.1016/j.apacoust.2018.05.013 [51] 陈明柱, 赵玉垒. 某电动车型空调管道和出风口的气动噪声分析[J]. 汽车工程师, 2019(10): 44-48.CHEN Ming-zhu, ZHAO Yu-lei. Analysis on aerodynamic noise of air conditioning ducts and outlets of electric vehicle[J]. Auto Engineer, 2019(10): 44-48. [52] 李春花, 徐鹏, 赵玉垒. 汽车空调的气动噪声分析和降噪方案设计[J]. 制冷与空调, 2020, 20(3): 45-49.LI Chun-hua, XU Peng, ZHAO Yu-lei. Aerodynamic noise analysis and noise reduction scheme design of vehicle air-conditioning[J]. Refrigeration and Air-conditioning, 2020, 20(3): 45-49. [53] YE Li-li, WANG Xian-zhong, WU Wei-guo, et al. Study on acoustic characteristics of air pipeline with guide vane and bionic guide vane[J]. Ocean Engineering, 2023, 284: 1-16. [54] RAŠUO B, DINULOVI AC'G M, TRNINI AC'G M, et al. A study of aerodynamic noise in air duct systems with turning vanes[J]. FME Transactions, 2021, 49(2): 308-314. doi: 10.5937/fme2102308R [55] 杨振威, 赖焕新. 管道壁面凹槽的布局对气动噪声的影响[J]. 华东理工大学学报, 2019, 45(1): 180-188.YANG Zhen-wei, LAI Huan-xin. Effects of interference between wall grooves on pipeline aeroacoustic noise[J]. Journal of East China University of Science and Technology, 2019, 45(1): 180-188. [56] YANG B M, CHO H M. Flow analysis of air intake duct for noise reduction in automobile[J]. Contemporary Engineering Sciences, 2016, 9(20): 989-995. [57] COULON J M, ATALLA N, DESROCHERS A. Optimization of concentric array resonators for wide band noise reduction[J]. Applied Acoustics, 2016, 113: 109-115. doi: 10.1016/j.apacoust.2016.06.015 [58] SUN Cheng-hai, PÉROT F, ZHANG Rao-yang, et al. Lattice Boltzmann formulation for flows with acoustic porous media[J]. Comptes Rendus Mecanique, 2015, 343: 533-544. doi: 10.1016/j.crme.2015.07.013 [59] 敖庆波, 汤慧萍, 王建忠, 等. 不锈钢纤维复合材料吸声性能研究[J]. 材料导报, 2014, 28(6): 66-69.AO Qing-bo, TANG Hui-ping, WANG Jian-zhong, et al. Study of stainless steel fibers composite materials on sound absorption performance[J]. Materials Reports, 2014, 28(6): 66-69. [60] GUO J W, QU R H, FANG Y, et al. A phase-gradient acoustic metasurface for broadband duct noise attenuation in the presence of flow[J]. International Journal of Mechanical Sciences, 2023, 237: 1-10. [61] 徐方奇, 任志英, 白鸿柏, 等. 金属纤维声学性能研究现状与展望[J]. 现代制造工程, 2022(6): 128-152.XU Fang-qi, REN Zhi-ying, BAI Hong-bai, et al. Research status and prospect of acoustic properties of metal fiber[J]. Modern Manufacturing Engineering, 2022(6): 128-152. [62] FANG Y, ZHANG X, ZHOU J, et al. Acoustic porous metasurface for excellent sound absorption based on wave manipulation[J]. Journal of Sound and Vibration, 2018, 434: 273-283. doi: 10.1016/j.jsv.2018.08.003 [63] JI G S, FANG Y, ZHOU J, et al. Porous labyrinthine acoustic metamaterials with high transmission loss property[J]. Journal of Applied Physics, 2019, 125: 1-11. [64] ZHOU J, ZHANG X, FANG Y. Analytical modelling for predicting the sound field of planar acoustic metasurface[J]. Journal of Applied Physics, 2018, 123: 1-10. [65] GUO J W, ZHANG X, FANG Y, et al. Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners[J]. Journal of Applied Physics, 2018, 123: 1-11. [66] ZHANG X Q, CHENG L. Acoustic silencing in a flow duct with micro-perforated panel liners[J]. Applied Acoustics, 2020, 167: 1-13. [67] QU R H, GUO J W, FANG Y, et al. Broadband quasi- perfect sound absorption by a metasurface with coupled resonators at both low- and high-amplitude excitations[J]. Mechanical Systems and Signal Processing, 2023, 204: 1-15. [68] GUO J W, FANG Y, ZHANG X. Forbidden transmission of broadband duct noise realized by compactly placed detuned resonators[J]. Acoustics Australia, 2022, 50: 79-90. [69] SU Z H, ZHU Y F, GAO S Y, et al. High-efficient and broadband acoustic insulation in a ventilated channel with acoustic metamaterials[J]. Frontiers in Mechanical Engineering, 2022, 8: 1-7. [70] GUO J W, FANG Y, JIANG Z Y, et al. An investigation on noise attenuation by acoustic liner constructed by Helmholtz resonators with extended necks[J]. The Journal of the Acoustical Society of America, 2021, 149(1): 70-81. doi: 10.1121/10.0002990 [71] GUO J W, FANG Y, QU R H, et al. Development and progress in acoustic phase-gradient metamaterials for wavefront modulation[J]. Materials Today, 2023, 66: 321-338. doi: 10.1016/j.mattod.2023.04.004 [72] ZHU Y F, ZOU X Y, LIANG B, et al. Acoustic one-way open tunnel by using metasurface[J]. Applied Physics Letters, 2015, 107: 1-4. [73] CAO W K, WU L T, ZHANG C, et al. Asymmetric transmission of acoustic waves in a waveguide via gradient index metamaterials[J]. Science Bulletin, 2019, 64 (12): 808-813. doi: 10.1016/j.scib.2019.01.002 [74] HU C J, ZENG Y L, LIU Y N, et al. Three-dimensional broadband acoustic waveguide cloak[J]. Chinese Physics Letters, 2020, 37(5): 1-4. [75] LIU M H, LI X, ZOU X Y, et al. Broadband acoustic insulation via gradient impedance boundary waveguide[J]. Applied Physics Letters, 2022, 120: 1-6. [76] WANG H J, LIN W, GU J C. Study on one-way transmission of acoustic wave based on metasurface[J]. Journal of Physics: Conference Series, 2021, 1978: 1-6. [77] ANACHKOVA M, PECIOSKI D, DOMAZETOVSKA S, et al. Design and analysis of experimental adaptive feedback system for active noise control (ANC) in a duct[J]. Journal of Mechanical Engineering, Automation and Control Systems, 2023, 4(1): 1-16. doi: 10.21595/jmeacs.2023.23207 [78] 赵海宇, 周强, 宋经远, 等. 限流孔板在飞机空调管道的噪声分析及优化设计[J]. 机械科学与技术, 2024, 43(1): 180-186.ZHAO Hai-yu, ZHOU Qiang, SONG Jing-yuan, et al. Noise analysis and optimization design of restriction orifice plate in aircraft air conditioning duct[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 180-186. [79] TAO F. Experimental study of restrictor noise in ventilation duct systems. Southampton: University of Southampton, 2016. [80] BIERMEIER T, BECKER S, RISCH P. Acoustic investigations of HVAC systems in vehicle//SAE International. SAE 2012 World Congress and Exhibit. Detroit: SAE International, 2012: 1-10. [81] GEIHE B, WELLNER J, ASHCROFT G. Numerical simulation of acoustic resonance in a duct containing a flat plate[J]. Fluids, 2022, 7: 1-14. [82] ZHAO F T, CUI B, WU F, et al. Investigation on characterization of typical characteristic in compressor based on flat plate model[J]. Applied Sciences, 2022, 12: 1-21. [83] TAN B T, THOMPSON M C, HOURIGAN K. Sources of acoustic resonance generated by flow around a long rectangular plate in a duct[J]. Journal of Fluids and Structures, 2003, 18(6): 729-740. doi: 10.1016/j.jfluidstructs.2003.08.016 [84] VARGAS A, MITTAL R, DONG H. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight[J]. Bioinspiration and Biomimetics, 2008, 3: 1-13. [85] MUTHURAMALINGAM M, TALBOYS E, WAGNER H, et al. Flow turning effect and laminar control by the 3D curvature of leading edge serrations from owl wing[J]. Bioinspiration and Biomimetics, 2021, 16: 1-15. [86] 李紫娟. 仿生空调叶片对车内热环境与声场的影响研究. 常州: 江苏理工学院, 2018.LI Zi-juan. Study on the influence of bionic air conditioning blades on the thermal environment and sound field inside vehicle. Changzhou: Jiangsu University of Technology, 2018. [87] JONGERIUS S R, LENTINK D. Structural analysis of a dragonfly wing[J]. Experimental Mechanics, 2010, 50(1): 1323-1334. [88] MURPHY J T, HU H. An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications[J]. Experiments in Fluids, 2010, 49(2): 531-546. doi: 10.1007/s00348-010-0826-z [89] MENDES R D E, PáBON J J G, POTTIE D L F, et al. Artificial intelligence strategies applied in general and automotive air conditioning control: A review of the last 20 years[J]. International Journal of Refrigeration, 2024, 164: 180-198. doi: 10.1016/j.ijrefrig.2024.03.009 [90] WANG S Z, HE G W, ZHANG X. Lift enhancement on spanwise oscillating flat-plates in low-Reynolds-number flows[J]. Physics of Fluids, 2015, 27: 1-19. [91] 胡梦杰. 风力机叶片翼型及涡流发生器气动形状组合优化设计研究. 武汉: 湖北工业大学, 2020.HU Meng-jie. Research on optimal design of aerodynamic shape combination of wind turbine blade airfoil and vortex generator. Wuhan: Hubei University of Technology, 2020. [92] VELTE C M. Characterization of vortex generator induced flow. Lyngby: Technical University of Denmark, 2009. [93] LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38: 389-420. doi: 10.1016/S0376-0421(02)00010-6 [94] 赵艳凤. 叶栅表面微形貌的气动特性影响机理与减阻方法研究. 大连: 大连理工大学, 2016.ZHAO Yan-feng. Studies for the influence mechanism and drag-reduction method of surface micro-topography on the performance of linear cascade. Dalian: Dalian University of Technology, 2016. [95] 庄志勇, 段传学, 刘肖, 等. 汽车空调气动噪声分析和声品质优化[J]. 制冷技术, 2021, 41(3): 78-86.ZHUANG Zhi-yong, DUAN Chuan-xue, LIU Xiao, et al. Aerodynamic noise analysis and sound quality optimization for automotive air conditioner[J]. Chinese Journal of Refrigeration Technology, 2021, 41(3): 78-86. [96] MASULLO M, YAMAUCHI K, NAKATANI Y, et al. HVAC noise in car cabin: A preliminary comparison between ICEVs and HEVs//DEGA. Proceedings of the 23rd International Congress on Acoustics. Berlin: DEGA, 2019: 8042-8047. [97] LEITE R P, PAUL S, GERGES S N Y. Investigation of the perceived sound quality of an automotive HVAC system//SAE International. SAE 2006 Congress and Exhibit. Detroit: SAE International, 2006: 1-5. [98] LEITE R P, PAUL S, GERGES S N Y. A sound quality-based investigation of the HVAC system noise of an automobile model[J]. Applied Acoustics, 2009, 70(4): 636-645. doi: 10.1016/j.apacoust.2008.06.010 [99] NINGBAI N. Analysis of air flow distribution and thermal comfort in hybrid electric vehicles. Burnaby: Simon Fraser University, 2011. [100] GASPARETTO V E L, ELSAYED M S A. Multiscale optimization of specific elastic properties and microscopic frequency band-gaps of architectured microtruss lattice materials[J]. International Journal of Mechanical Sciences, 2021, 197: 1-16. [101] BILAL O R, BALLAGI D, DARAIO C. Architected lattices for simultaneous broadband attenuation of airborne sound and mechanical vibrations in all directions[J]. Physical Review Applied, 2018, 10(5): 1-9. -
下载: