Application review on FMEA/FMECA in marine engineering
-
摘要: 详细梳理了FMEA/FMECA的基本框架,总结了中国、美国和挪威三大船级社中FMEA/FMECA在实施方法上的异同点,归纳了FMEA/FMECA在现代船舶及海洋装备领域的具体应用和研究热点;指出了当前FMEA/FMECA应用中存在的难点与问题;预测了FMEA/FMECA未来的发展趋势。研究结果表明:FMEA/FMECA已广泛应用于船舶动力系统、电气与自动化系统、关键液压与管路系统以及各类海洋工程装备的失效与风险评估;研究热点集中于将FMEA/FMECA与层次分析法结合科学地确定风险优先级数(RPN)中各参数的权重,提高其准确性和客观性;利用模糊集理论处理了评估过程中的不确定性和主观性;使用深度学习和大数据技术动态预测了实时失效模式;难点与问题主要包括对复杂集成系统的分析能力不足、高质量失效数据的匮乏,以及传统RPN计算方法的局限性;FMEA/FMECA将向智能化、系统化和全周期化发展,首先是数据驱动的智能化分析,即利用数字孪生与人工智能技术,实现从静态评估向动态预测与预测性健康管理的转变;其次是面向新型风险的适应性扩展,以应对智能自主船舶和绿色新能源船舶带来的全新挑战;最终FMEA/FMECA将深度融合于船舶的全生命周期,从设计、运营到维护,形成一个持续优化的风险管理闭环。
-
关键词:
- 船舶与海洋工程 /
- FMEA/FMECA /
- 综述 /
- 风险评估 /
- 可靠性分析
Abstract: The basic framework of FMEA/FMECA was summarized in detail. The similarities and differences in the implementation methodologies among three major classification societies were concluded, including China, the United States, and Norway. The specific applications and research hotspots of FMEA/FMECA in the fields of modern ships and marine equipment were further elaborated. The existing difficulties and challenges in the application of FMEA/FMECA were also pointed out. The future development trends of FMEA/FMECA were predicted. Research results indicate that this methodology has been widely applied to the failure and risk assessment of ship power systems, electrical and automation systems, critical hydraulic and piping systems, and various types of marine engineering equipment. Research hotspots focus on how to improve the accuracy and objectivity of FMEA/FMECA, particularly by integrating it with the analytic hierarchy process to scientifically determine the weights of parameters within the risk priority number (RPN), using fuzzy set theory to handle uncertainty and subjectivity in the assessment process, and employing deep learning and big data technologies to dynamically predict real-time failure modes. The difficulties and challenges primarily include insufficient analytical capability for complex integrated systems, a lack of high-quality failure data, and the limitations of traditional RPN calculation methods. FMEA will embrace a more intelligent, systematic, and full life cycle-oriented evolution. The first is data-driven intelligent analysis, which involves using digital twin and artificial intelligence technologies to transition from static assessment to dynamic prediction and predictive health management. The second is the adaptive expansion to address new types of risks, so as to address the novel challenges posed by intelligent autonomous ships and green new-energy vessels. Ultimately, FMEA will be deeply integrated into the full life cycle of ships, from design and operation to maintenance, forming an ever-optimizing closed-loop risk management system.-
Key words:
- marine and ocean engineering /
- FMEA/FMECA /
- review /
- risk assessment /
- reliability analysis
-
表 1 FMEA/FMECA的基本流程
Table 1. Basic flow of FMEA/FMECA
流程 内容 定义系统 ·收集、调研船舶系统中与风险相关的信息,包括船舶设计信息、运行参数等
·明确相关系统的各项功能,为风险评估奠定基础
·定义不同系统之间的边界,防止边界关键因素被漏掉或错误的重复考虑确定任务剖面 ·根据运行环境、产品状态、历史数据等,明确指出分析工作的任务剖面
·划分为正常情况下全速航行、靠码头操纵等建立系统可靠性框图 ·建立可靠性框图来描述系统各功能单元间的逻辑关系
·把系统分割成具有独立功能的子系统, 逐层分析故障模式产生的影响确定故障模式及原因 ·参考系统、子系统和部件的历史记录来确定故障模式,包括功能全部丧失、功能部分丧失和提前/滞后运行
·故障原因是指直接导致故障或引起性能降低而发展为故障的那些物理或化学作用、设计缺陷、质量缺陷、部分误
操作及其他故障原因
·一个故障模式可能由多个故障原因引起, 故障原因也应包括人为失误评价故障模式对系统的影响 ·每一故障模式对系统使用、功能所导致的后果
·故障的影响可能包括:安全方面、环境方面、经济方面等
·故障影响一般分为3个等级: 自身的、上一级以及最终影响确定故障探测方法及补偿措施 ·故障探测方法主要有目测、音响报警、自动传感记录等
·可以采取一定的补偿措施减轻或消除故障对系统的影响:增加备用设备、安装保险装置或对设备和人员的应急
保护等;
·国际海事组织明确指出: 如果故障的最终影响是灾难性的或危险时(严重的),要求有备用设备和纠正操作程序试验 ·根据分析结果编制一个初步报告, 提出初步的建议性分析和解决方法
·对于需要通过试验验证的分析以及可能会产生严重后果的系统,制定试验程序并进行试验制定FMEA/FMECA表格 ·确定对系统有重大影响的故障模式,从而为改善系统提供依据,进而预防事故的发生
·确定品质管理、检验、制造等各阶段可能出现的问题
·确定设备的重要故障,确定是否需要增加系统安全性设计或冗余设计,检验其维护方式、保养周期等内容
·重新修改操作说明书,明确产品安全方面的问题
·确定设计方面是否存在重大问题,对设计进行评审和更改表 2 CCS、ABS与DNV的FMEA/FMECA阶段过程分析
Table 2. Process analysis of FMEA/FMECA stage for CCS, ABS and DNV
阶段 准备阶段 开展阶段 结束阶段 CCS 准备数据和信息 故障分析、危害性分析、具体试验 编制报告、更新系统 DNV 启动 结构分析、功能分析、风险分析 风险评估、管理风险 ABS 数据管理 研究与试验、确定故障形式、验证程序 编制报告 表 3 CCS、ABS与DNV的FMEA/FMECA方法侧重点对比
Table 3. Comparison of focus of FMEA/FMECA methods in CCS, ABS and DNV
分析维度 DNV ABS CCS 核心指导思想 风险驱动 功能驱动 危害驱动 分析侧重点 ·新技术与复杂系统的风险评估
·故障频率、严重程度等系统分析·系统的功能安全性
·功能分解与失效分析
·单一、隐藏、共因故障识别·故障对船舶安全的直接危害
·与运营安全和环境保护的关联
·风险评估与维护体系的结合方法论特点 ·前瞻性与系统性
·强调定量计算与风险矩阵
·结果用于反哺工程标准和设计指南·实践性与验证性
·强调FMEA结果的物理测试验证
·需制定详细验证测试程序·综合性与指导性
·强调分析结果向维护措施的转化
·设有明确的“更新过程”与闭环反馈适用场景 创新技术、复杂海工装备、新型燃料系统等缺乏历史数据的对象 DP系统、自动化系统、集散控制系统等软硬件高度集成的对象 技术成熟的常规船型及系统,如散货船、油轮的机电系统 有效性评估 设计早期的风险决策支持与技术可行性论证 通过实测确保系统功能完整性,发现隐藏设计缺陷 将风险分析转化为可执行的船上维护与应急计划 表 4 柴油机动力系统故障模式
Table 4. Fault mode of diesel engine power system
编号 故障模式 编号 故障模式 编号 故障模式 A1 燃油脏污 A9 冷却水温度异常 A17 连杆断裂 A2 燃油雾化不良 A10 冷却水压力异常 A18 连杆大/小端轴承损坏 A3 供油不足 A11 进气压力低 A19 曲轴断裂 A4 速闭阀无法正常启闭 A12 进气温度过高 A20 曲轴裂纹 A5 滑油质量差 A13 排气温度过高 A21 主轴承擦伤、腐蚀 A6 滑油压力不足 A14 冒蓝烟 A22 启动空气系统失效 A7 滑油温度异常 A15 冒白烟 A23 转速不稳定 A8 速回阀无法正常启闭 A16 冒黑烟 A24 机器不能全负荷运转 表 5 吊舱推进动力系统故障模式
Table 5. Fault mode of podded propulsion power system
编号 故障模式 编号 故障模式 编号 故障模式 F1 绕组接地故障 F6 桨叶与附属部件接触 F11 轴过热烧伤、裂纹 F2 电机过热、冒烟 F7 螺旋桨变形断裂 F12 轴断裂、塑性变形 F3 电机振动大并有异响 F8 螺旋桨鸣音 F13 壳体变形、裂纹、破坏 F4 电机起动电容故障 F9 螺旋桨气蚀 F14 壳体带电 F5 缠绕异物 F10 轴传动振动、噪声 表 6 FMEA/FMECA在船舶动力系统中的应用研究进展
Table 6. Research progress on application of FMEA/FMECA in marine power systems
参考文献 研究对象 研究方法 主要成果/结论 创新点与局限性 [18] 邮轮柴油机系统 FMEA+AHP+模糊综合评价 量化系统故障隐患等级,识别出高风险故障模式 系统结合了专家层级权重(AHP)与模糊评价,使风险排序更结构化,但结果准确度具有高度依赖性 [19] 国产船舶DP3系统 FMEA(基于功能图谱) 建立功能图谱,分析故障对位置的保持影响,验证系统冗余性 严格遵循船级社规范,与工程实践紧密结合,但对于多重并发故障或软件逻辑的深入分析有限 [20] 全电力船舶推进系统 模糊理论FMEA 实现了对各子系统故障模式的模糊置信评价,确定了风险因子与权重 针对全电力系统的新特点,应用模糊理论处理其风险评估中的不确定性问题 [4] 船舶柴油机(曲轴连杆机构) FMECA+经验取值法 实现对柴油机可靠性的定量描述,完成对核心机构故障分析 尝试结合经验数据进行定量分析,旨在使FMECA的结果更具量化基础,但数据来源是关键,实施难度较大 [22]、[23] 柴油机 FMECA+模糊AHP+模糊综合评价 引入专家权重,对FMECA的关键性进行定性/定量表征,用于可靠性预测 构建了更为复杂的权重模型,试图使专家意见的融合过程更加客观、合理 [25] DP系统升级(DP1→DP2) FMEA 识别了在满足更高等级冗余性要求下,电力、推进等系统的关键改进点 结合实际改装案例,展示了FMEA在工程变更风险管理中的实用价值,未深入到具体组件的失效机理 [27] 燃料电池船混合动力系统 重新定义的FMEA 针对燃料电池、电池等新组件,重新定义评估标准,评估系统安全性 针对新能源技术调整了FMEA框架,使其能评估全新类型的风险,评估结果的通用性与可比性需要验证 [28] 船舶动力装置 QFD+FMEA集成理论 将QFD引入FMEA,根据设计需求识别关键环节 将设计前端的需求分析工具(QFD)与后端的风险分析工具(FMEA)结合,提升针对性 表 7 FMEA/FMECA在船舶电气、液压、管路等系统中的应用研究进展
Table 7. Research progress on application of FMEA/FMECA in marine electrical, hydraulic, pipeline and other systems
参考文献 研究对象 研究方法 主要成果/结论 创新点与局限性 [31] 船舶液压系统 FMECA+模糊综合评价 定量表达了液压系统失效模式的危害程度,解决了分析中的模糊性问题 针对液压系统故障隐蔽、难以直接观测的特点,应用模糊理论进行量化是有效途径 [32] 船舶压缩空气系统 基于规则的模糊FMEA 构建了125条模糊规则进行FRPN计算,识别出活塞环断裂等为最关键失效模式 建立了大规模的模糊规则库,使风险推理过程更精细、自动化程度更高,但工作量大 [34] 船舶设备(通用) 基于FMEA的故障信息处理系统 建立了将FMEA信息与设备使用故障信息进行统一管理的系统框架 将FMEA从一次性的分析活动,转变为一个动态更新、持续使用的信息管理系统,理念先进。但侧重于信息系统框架的构建,并未对FMEA分析方法本身进行改进 [36] 液压舵机系统 模糊FMEA 构建模糊推理引擎计算风险,识别出系统压力不足为最关键故障 将风险分析与维修成本、停航时间等经济因素关联,应用导向明确 [39] LNG燃料船(泄漏问题) FMECA 计算并排序了LNG泄漏模式的临界度,提出了风险控制方案 聚焦于新能源船舶带来的泄漏这一重大风险,研究具有很强的针对性和工程价值 [40] LNG燃料船FGSS FMECA+定量FTA 识别了FGSS关键组件,实现了FMECA(自下而上)与FTA(自上而下)的风险分析互补 通过2种不同路径的分析,显著提升了风险识别的全面性和深度。但分析模型仍为静态,对于系统在运行过程中的动态交互行为捕捉能力有限 [41] 船舶靠泊操纵 FMEA+FTA 评估了靠泊操纵风险,识别出环境因素和人为因素是关键风险源 将FMEA的应用对象从硬件系统扩展到了操作流程,并引入了人为因素,视角独特 表 8 FMEA/FMECA在其他海洋工程与装备中的应用研究进展
Table 8. Research progress on the application of FMEA/FMECA in other marine engineering and equipment
参考文献 研究对象 研究方法 主要成果/结论 创新点与局限性 [45] 商船涡轮增压器(积垢现象) 基于规则的模糊FMEA 通过FRPN识别出与积垢相关的关键风险因素(压缩压力低、燃油消耗高等) 针对性能退化这类渐变、模糊的“软”故障,应用模糊逻辑进行量化评估,但存在一定主观性 [46] 油田水下生产控制系统 FMECA 系统性识别了各类设备的故障模式及危害,发现主控站的Ⅰ类严酷度危害最大 将FMECA应用于高风险、高价值的水下系统中,侧重于危害的定性识别和排序,但未引入更先进的定量分析方法 [47] 海上浮式风机 FMECA 全面分析了各主要部件的失效模式,并强调了腐蚀、极限风况等环境因素是危害性最大的风险源 综合考虑多物理场和极端环境载荷的影响,但对于多因素耦合导致的失效机理缺乏深度量化模型 [48] 深水铺管起重船电气控制系统 FMEA+仿真验证 完成了起重机电气系统在关键工况下的风险评估,并通过PLC故障模拟验证了分析结果 将案例分析与仿真验证结合,但研究对象仅聚焦于电气控制系统 [49] 隧道推力器 FMECA (用于指导状态监测) 根据FMECA识别出故障模式,针对性地确定了4种必要的状态监测技术 将FMEA从一个风险排序工具转变为设计状态监测和视情维护策略的直接输入,应用价值高 -
[1] 黄金娥, 林武强, 孙悦. 基于FMECA的某型船舶报警系统的故障分析[J]. 现代电子技术, 2013, 36(17): 101-104.HUANG Jin-e, LIN Wu-qiang, SUN Yue. Fault analysis of a ship alarm system based on FMECA[J]. Modern Elec-tronics Technique, 2013, 36(17): 101-104. [2] PILLAY A, WANG J. Modified failure mode and effects analysis using approximate reasoning[J]. Reliability Engi-neering & System Safety, 2003, 79(1): 69-85. [3] 竹建福. FMECA在船舶主机系统中的应用[D]. 上海: 上海海事大学, 2006.ZHU Jian-fu. Application of FMECA in ship main engine system[D]. Shanghai: Shanghai Maritime University, 2006. [4] 贾广付. 船舶柴油机故障实例统计与FMECA分析[J]. 河南科技, 2020(8): 52-54.JIA Guang-fu. Marine diesel engine failure case statistics and FMECA analysis[J]. Henan Science and Technology, 2020(8): 52-54. [5] 章国庆. FMEA分析在海洋工程中的应用[J]. 物流工程与管理, 2015, 37(9): 206-208.ZHANG Guo-qing. Application of FMEA analysis in ocean engineering[J]. Logistics Engineering and Management, 2015, 37(9): 206-208. [6] 储年生, 王学志. FMEA在设计项目风险管理中的应用[J]. 船舶与海洋工程, 2019, 35(4): 69-72.CHU Nian-sheng, WANG Xue-zhi. Application of FMEA in risk management of design project[J]. Shipbuilding and Ocean Engineering, 2019, 35(4): 69-72. [7] 杨梦凯, 曾骥, 麦松彦. 基于正向FTF法的船舶系统设备的风险评估[J]. 船舶物资与市场, 2020(12): 17-20.YANG Meng-kai, ZENG Ji, MAI Song-yan. Risk assess-ment of ship system equipment based on forward FTF method[J]. Ship Materials and Market, 2020(12): 17-20. [8] 张跃年. 船舶机电系统故障模式与影响分析[J]. 大连海事大学学报, 2009, 35(增1): 231-233.ZHANG Yue-nian. Failure mode and effect analysis of ship mechanical and electrical system[J]. Journal of Dalian Maritime University, 2009, 35(S1): 231-233. [9] 董翔. 基于FMEA方法的船舶IBS航行安全分析[J]. 船舶与海洋工程, 2020, 36(2): 72-77.DONG Xiang. Analysis of ship IBS navigation safety based on FMEA method[J]. Shipbuilding and Ocean Engineering, 2020, 36(2): 72-77. [10] 刘大刚, 郑中义, 吴兆麟. 大风浪中航行船舶风险体系分析[J]. 交通运输工程学报, 2004, 4(2): 100-102. http://transport.chd.edu.cn/article/id/200402023LIU Da-gang, ZHENG Zhong-yi, WU Zhao-lin. Risk analysis system of underway ships in heavy sea[J]. Journal of Traffic and Transportation Engineering, 2004, 4(2): 100-102. http://transport.chd.edu.cn/article/id/200402023 [11] BASHAN V, DEMIREL H, GUL M. An FMEA-based TOPSIS approach under single valued neutrosophic sets for maritime risk evaluation: The case of ship navigation safety[J]. Soft Computing, 2020, 24(24): 18749-18764. doi: 10.1007/s00500-020-05108-y [12] 竹建福, 许乐平. FMEA在船舶系统风险评估中的应用[J]. 世界海运, 2006(2): 22-24.ZHU Jian-fu, XU Le-ping. Application of FMEA in risk assessment of ship system[J]. The World by Sea, 2006(2): 22-24. [13] OZKOK M. Risk assessment in ship hull structure production using FMEA[J]. Journal of Marine Science and Technology-Taiwan, 2014, 22(2): 173-185. [14] 于卓. 船舶主机系统故障诊断中故障树分析法的应用研究[J]. 科技创新与应用, 2017(3): 156.YU Zhuo. Application research of fault tree analysis in fault diagnosis of ship main engine system[J]. Science and Technology Innovation and Application, 2017(3): 156. [15] 刘汉有, 范爱龙, 夏民杰. 氢电混合动力船舶功率分配控制与能量管理策略试验验证[J]. 交通运输工程学报, 2025, 25(4): 221-237. doi: 10.19818/j.cnki.1671-1637.2025.04.016LIU Han-you, FAN Ai-long, XIA Min-jie. Experimental validation of power distribution control and energy mana-gement strategies for hydrogen-electric hybrid power ship[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 221-237. doi: 10.19818/j.cnki.1671-1637.2025.04.016 [16] 曾苗, 姚弘. 浅析失效分析在海洋平台工程中的应用[J]. 科技展望, 2016, 26(24): 175.ZENG Miao, YAO Hong. Analysis on the application of failure analysis in offshore platform engineering[J]. Tech-nology Outlook, 2016, 26(24): 175. [17] 陈亮. 失效分析在海洋平台工程中的应用[D]. 大连: 大连理工大学, 2006.CHEN Liang. Application of failure analysis in offshore platform engineering[D]. Dalian: Dalian University of Tech-nology, 2006. [18] GE P, GE Q Z, LI J H, et al. Reliability analysis of cruise diesel engine system[C]//VDE Verlag GmbH. 2nd International Symposium on Mechanical Systems and Electro-nic Engineering. Berlin: VDE Verlag GmbH, 2022. [19] 任劲松. FMEA在国产DP3系统工程船舶上的应用[J]. 船舶工程, 2015, 37(增1): 153-155, 181.REN Jin-song. Application of FMEA in domestic DP3 system engineering ship[J]. Marine Engineering, 2015, 37(S1): 153-155, 181. [20] 刘胜, 郭晓杰, 张兰勇, 等. 基于模糊置信理论的全电力船舶推进FMEA评估[J]. 控制工程, 2021, 28(9): 1807-1813.LIU Sheng, GUO Xiao-jie, ZHANG Lan-yong, et al. FMEA evaluation of all-electric ship propulsion based on fuzzy confidence theory[J]. Control Engineering, 2021, 28(9): 1807-1813. [21] 谢珉, 王锋, 刘江. 辅船动力定位系统的故障模式分析及应用[J]. 船舶设计通讯, 2019(增1): 110-115.XIE Min, WANG Feng, LIU Jiang. Fault mode analysis and application of auxiliary ship dynamic location system[J]. Ship Design Communication, 2019(S1): 110-115. [22] ZHANG H L, HUANG H Z, LIU Y. Fuzzy reliability prediction method based on FMECA for diesel engine[C]//ASME. Stress Analysis, and Failure Prevention Conference. New York: ASME, 2009: 751-757. [23] 张晗亮. 以FMECA为中心的柴油机可靠性研究[D]. 成都: 电子科技大学, 2009.ZHANG Han-liang. Reliability research of diesel engine based on FMECA[D]. Chengdu: University of Electronic Science and Technology of China, 2009. [24] 曲兆源, 文武. DP-2动力定位船舶故障模式与影响分析[J]. 船电技术, 2022, 42(12): 71-75.QU Zhao-yuan, WEN Wu. Fault mode and impact analysis of DP-2 dynamic positioning ship[J]. Marine Electrical Tech-nology, 2022, 42(12): 71-75. [25] CHAE C J. A study on dynamic positioning system IMO class upgrade requirements[J]. Journal of Navigation and Port Research, 2015, 39(3): 165-172. doi: 10.5394/KINPR.2015.39.3.165 [26] 陈明. 某船动力定位系统配置及FMEA试验研究[J]. 广东造船, 2018(6): 28-39.CHEN Ming. Configuration of a ship's dynamic positioning system and FMEA test research[J]. Guangdong Ship-building, 2018(6): 28-39. [27] JEON H, PARK K, KIM J. Comparison and verification of reliability assessment techniques for fuel cell-based hybrid power system for ships[J]. Journal of Marine Science and Engineering, 2020, 8(2): 74. doi: 10.3390/jmse8020074 [28] WANG T X, LIU J L, ZENG F M. Application of QFD and FMEA in ship power plant design[C]//IEEE. 2017 10th International Symposium on Computational Intelligence and Design (ISCID). New York: IEEE, 2017: 467-470. [29] XU X L, LIU Q, ZHU B Q. Reliability evaluation of ship driver based on failure mode effects and criticality analysis[J]. Advanced Materials Research, 2013, 655-657: 2409-2413. doi: 10.4028/www.scientific.net/AMR.655-657.2409 [30] 李清, 孙玉伟, 吴健. 船舶并网光伏电力系统稳定性[J]. 交通运输工程学报, 2021, 21(5): 177-188. doi: 10.19818/j.cnki.1671-1637.2021.05.015 LI Qing, SUN Yu-wei, WU Jian. Stability of ship grid-connected photovoltaic power system[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 177-188. doi: 10.19818/j.cnki.1671-1637.2021.05.015 [31] 孙凯帆, 阚树林, 曹召锋, 等. 基于模糊FMECA的液压系统可靠性分析[J]. 液压气动与密封, 2014, 34(5): 26-29.SUN Kai-fan, KAN Shu-lin, CAO Zhao-feng, et al. Reliability analysis of hydraulic system based on fuzzy FMECA[J]. Hydraulics Pneumatics and Seals, 2014, 34(5): 26-29. [32] CEYLAN B O. Shipboard compressor system risk analysis by using rule-based fuzzy FMEA for preventing major marine accidents[J]. Ocean Engineering, 2023, 272: 113888. doi: 10.1016/j.oceaneng.2023.113888 [33] 宋谦. 基于FMEA的船舶电力设备故障信息处理系统[J]. 舰船科学技术, 2018, 40(22): 100-102.SONG Qian. Fault information processing system of marine electric equipment based on FMEA[J]. Ship Science and Technology, 2018, 40(22): 100-102. [34] 郑卫东. 基于FMEA的船舶设备故障信息处理系统[J]. 计算机与现代化, 2012(5): 172-177, 181.ZHENG Wei-dong. Ship equipment fault information processing system based on FMEA[J]. Computers and Modernization, 2012(5): 172-177, 181. [35] 肖志成. DP船舶直流闭环母排短路压降穿越FMEA分析[J]. 船电技术, 2024, 44(2): 46-54.XIAO Zhi-cheng. FMEA analysis of DC closed-loop bus short-circuit voltage drop crossing in DP ships[J]. Marine Electrical Technology, 2024, 44(2): 46-54. [36] KARANOVIC V, CEYLAN B O, JOCANOVIC M. Reliable ships: A fuzzy FMEA based risk analysis on four-ram type hydraulic steering system[J]. Ocean Engineering, 2024, 314: 119758. doi: 10.1016/j.oceaneng.2024.119758 [37] 陈新飚. FMECA技术在船舶防腐防漏中的应用[J]. 中国质量, 2010(7): 39-43.CHEN Xin-biao. Application of FMECA technology in ship anti-corrosion and leakage prevention[J]. The Chinese Quality, 2010(7): 39-43. [38] 黄雷, 施方乐. 船舶管路防腐、防漏设计FMECA[J]. 机电设备, 2019, 36(2): 34-38, 49.HUANG Lei, SHI Fang-le. Ship pipeline anti-corrosion, anti-leakage design FMECA[J]. Mechanical and Electrical Equipment, 2019, 36(2): 34-38, 49. [39] FU S S, YAN X P, ZHANG D, et al. Use of FMECA method for leakage analysis of LNG fueled vessels[C]//ASME. The 33rd International Conference on Ocean, Offshore and Arctic Engineering. New York: ASME, 2014: 23701. [40] MILIOULIS K, BOLBOT V, THEOTOKATOS G, et al. Safety analysis of a high-pressure fuel gas supply system for LNG fuelled vessels[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2022, 236(4): 1025-1046. doi: 10.1177/14750902221078426 [41] 吴昊. 基于FMEA的船舶靠泊操纵风险评估方法研究[J]. 水上安全, 2025(4): 91-93.WU Hao. Research on risk assessment method of ship berthing operation based on FMEA[J]. Maritime Safety, 2025(4): 91-93. [42] 刘克中, 俞月蓉, 庄素婕. 基于船舶动态群组的复杂通航水域碰撞风险评估[J]. 交通运输工程学报, 2025, 25(1): 145-159. doi: 10.19818/j.cnki.1671-1637.2025.01.010 LIU Ke-zhong, YU Yue-rong, ZHUANG Su-jie. Collision risk assessment for complex navigable waters based on ship dynamic cluster[J]. Journal of Traffic and Trans-portation Engineering, 2025, 25(1): 145-159. doi: 10.19818/j.cnki.1671-1637.2025.01.010 [43] LIU P D, XU Y Q, LI Y. An improved failure mode and effect analysis model for automatic transmission risk assess-ment considering the risk interaction[J]. IEEE Transactions on Reliability, 2023, 72(3): 1107-1122. doi: 10.1109/TR.2022.3215110 [44] 李贺. 海上浮式风机可靠性分析的FMECA和贝叶斯网络新方法[D]. 成都: 电子科技大学, 2021.LI He. New FMECA and Bayesian network methods for reliability analysis of offshore floating fan[D]. Chengdu: University of Electronic Science and Technology of China, 2021. [45] CEYLAN B O. Marine diesel engine turbocharger fouling phenomenon risk assessment application by using fuzzy FMEA method[J]. Proceedings of the Institution of Mecha-nical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2024, 238(3): 514-530. doi: 10.1177/14750902231208848 [46] 万波, 陈斌, 陈景皓, 等. 基于FMECA的水下生产控制系统风险识别[J]. 石油化工设备, 2018, 47(6): 16-20.WAN Bo, CHEN Bin, CHEN Jing-hao, et al. Risk identi-fication of subsea production control system based on FMECA[J]. Petrochemical Equipment, 2018, 47(6): 16-20. [47] 周昊, 陈帅, 侯承宇, 等. 基于FMECA方法的海上浮式风机失效模式分析[J]. 舰船科学技术, 2020, 42(19): 104-109.ZHOU Hao, CHEN Shuai, HOU Cheng-yu, et al. Failure mode analysis of offshore floating fan based on FMECA method[J]. Ship Science and Technology, 2020, 42(19): 104-109. [48] 杨瑜, 李志垒. FMEA在海洋工程重型起重机上的应用[J]. 船舶设计通讯, 2021(增1): 104-110.YANG Yu, LI Zhi-lei. Application of FMEA to heavy crane in ocean engineering[J]. Ship Design Communication, 2021(S1): 104-110. [49] GUAN S, KNUTSEN K E, ALNES Ø Å. Development of reliable condition monitoring technology for maritime using FMECA and Bayesian network modeling[C]//ASME. The 37th International Conference on Ocean, Offshore and Arctic Engineering. New York: ASME, 2018: 17-22. [50] ZHOU J, LIU Y, XIAHOU T F, et al. A novel FMEA-based approach to risk analysis of product design using extended choquet integral[J]. IEEE Transactions on Reliability, 2022, 71(3): 1264-1280. doi: 10.1109/TR.2021.3060029 [51] SUO B, ZHAO L, YAN Y. A novel dempster- shafer theory-based approach with weighted average for failure mode and effects analysis under uncertainty[J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104145. doi: 10.1016/j.jlp.2020.104145 [52] DAYA A A, LAZAKIS I. Investigating ship system perfor-mance degradation and failure criticality using FMECA and artificial neural networks[M]. London: CRC Press, 2022. [53] YOON K, KIM J. FMEA of electric power management system for digital twin technology development of electric propulsion vessels[J]. Journal of the Korean Society of Marine Environment and Safety, 2021, 27(7): 1098-1105. doi: 10.7837/kosomes.2021.27.7.1098 [54] ZHOU Q J, LI H T, ZENG X G, et al. A quantitative safety assessment for offshore equipment evaluation using fuzzy FMECA: A case study of the hydraulic submersible pump system[J]. Ocean Engineering, 2024, 293: 116611. doi: 10.1016/j.oceaneng.2023.116611 [55] SONG T X, TAN T Y, HAN G C. Research on preventive maintenance strategies and systems for in-service ship equipment[J]. Polish Maritime Research, 2022, 29(1): 85-96. doi: 10.2478/pomr-2022-0009 [56] LUO X F, HE H L, ZHANG X, et al. Failure mode analysis of intelligent ship positioning system considering correlations based on fixed-weight FMECA[J]. Processes, 2022, 10(12): 2677. doi: 10.3390/pr10122677 -
下载: