留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

移动荷载作用下连续粘弹性基础支承无限长梁的有限元分析

娄平 曾庆元

娄平, 曾庆元. 移动荷载作用下连续粘弹性基础支承无限长梁的有限元分析[J]. 交通运输工程学报, 2003, 3(2): 1-6.
引用本文: 娄平, 曾庆元. 移动荷载作用下连续粘弹性基础支承无限长梁的有限元分析[J]. 交通运输工程学报, 2003, 3(2): 1-6.
LOU Ping, CENG Qing-yuan. Finite element analysis of infinitely long beam resting on continuous viscoelastic foundation subjected to moving loads[J]. Journal of Traffic and Transportation Engineering, 2003, 3(2): 1-6.
Citation: LOU Ping, CENG Qing-yuan. Finite element analysis of infinitely long beam resting on continuous viscoelastic foundation subjected to moving loads[J]. Journal of Traffic and Transportation Engineering, 2003, 3(2): 1-6.

移动荷载作用下连续粘弹性基础支承无限长梁的有限元分析

基金项目: 

国家自然科学基金项目 50078006

铁道部科技研究开发计划项目 2001G029

教育部博士点基金项目 20010533004

详细信息
    作者简介:

    娄平(1968-), 男, 湖南浏阳人, 讲师, 博士生, 从事列车轨道(桥梁)振动, 结构可靠度研究

  • 中图分类号: U211.4;TB122

Finite element analysis of infinitely long beam resting on continuous viscoelastic foundation subjected to moving loads

More Information
  • 摘要: 把无限长梁、连续粘弹性基础和移动荷载视为一个系统, 并将该系统进行有限单元离散, 梁单元的弯曲形函数采用Hermitian三次方插值函数, 利用弹性系统动力学总势能不变值原理, 得到单元的刚度矩阵、质量矩阵、阻尼矩阵和节点荷载列阵, 建立该系统的振动方程组; 再用Wilsonθ法求解该振动方程组, 得到梁中点的位移时程曲线。举例分析了基础的粘弹性特性和梁的抗弯刚度对梁动力响应的影响。计算结果表明: 增大基础的弹性系数、阻尼系数和梁的抗弯刚度都有利于减小梁的动力响应。

     

  • 图  1  连续粘弹性基础支承无限长梁模型

    Figure  1.  Model of infinitely long beam resting on continuous viscoelastic foundation

    图  2  梁单元的节点力和节点位移

    Figure  2.  Nodal force and nodal displacement of beam element

    图  3  t时刻集中荷载P在梁单元上的位置

    Figure  3.  Position of concentrated load P on beam element at t time

    图  4  用Wilson θ法求解振动方程组(1) 的流程

    Figure  4.  Flowchart for solving vibration equations (1) using Wilson θ method

    图  5  单个移动荷载作用下长梁中点的位移时程曲线(无阻尼)

    Figure  5.  Displacement time history of the long beam at mid-point subjected to a moving load (without damping)

    图  6  单个移动荷载作用下长梁中点的位移时程曲线(有阻尼)

    Figure  6.  Displacement time history of the long beam at mid-point subjected to a moving load (with damping)

    图  7  三个移动荷载作用下长梁中点的位移时程曲线(无阻尼)

    Figure  7.  Displacement time history of the long beam at mid-point subjected to three moving loads (without damping)

    图  8  三个移动荷载作用下长梁中点的位移时程曲线(有阻尼)

    Figure  8.  Displacement time history of the long beam at mid-point subjected to three moving loads (with damping)

    表  1  长梁中点在移动荷载作用下的最大竖向位移

    Table  1.   Maximum displacement of long beam at mid-point subjected to moving loads

    梁及基础参数 单个荷载P=112800 N作用下长梁中点最大竖向位移/m 三个荷载P1P2P2P3之间距离为1.8 m, P1=P2=P3=112800N作用下长梁中点最大竖向位移/m
    50型钢轨I=2.037×10-5 m4 ks=8×107 N/m2 c=0 1.1215×10-3 1.2279×10-3
    c=1.3×105 Ns/m2 1.0223×10-3 1.0074×10-3
    ks=1.6×108 N/m2 c=0 6.8052×10-4 7.3234×10-4
    c=1.3×105 Ns/m2 6.0310×10-4 5.7984×10-4
    60型钢轨I=3.217×10-5 m4 ks=8×107N/m2 c=0 1.1625×10-3 1.2019×10-3
    c=1.3×105 Ns/m2 9.1647×10-4 9.2879×10-4
    ks=1.6×108 N/m2 c=0 6.2875×10-4 6.4796×10-4
    c=1.3×105 Ns/m2 5.4165×10-4 5.2476×10-4
    75型钢轨I=4.49×10-5 m4 ks=8×107 N/m2 c=0 1.1151×10-3 1.038 3×10-3
    c=1.3×105 Ns/m2 8.4569×10-4 8.927 7×10-4
    ks=1.6×108 N/m2 c=0 6.6603×10-4 5.9460×10-4
    c=1.3×105 Ns/m2 5.0035×10-4 4.911 8×10-4
    下载: 导出CSV
  • [1] YoshidaD M, WeaverW. Finite element analysis of beams and plates with moving loads[J]. Publication of InternationalAssociation forBridge and Structural Engineering, 1971, 31 (1): 179—195.
    [2] FilhoF V. F inite element analysis of structures under movingloads[J]. Shock andVibrationDigest, 1978, 10 (8): 27-35.
    [3] OlssonM. Finite element, modal co-ordinate analysis of stru-ctures subjected to m oving loads[J]. Journal ofSound andVibration, 1985, 99 (1): 1—12.
    [4] ThambiratnamD, ZhugeY. Dynamic analysis of beams on anelastic foundation subjected to moving loads[J]. Journal ofSound andVibration, 1996, 198 (2): 149—169.
    [5] WU Jong-shyong, DAIChang-wang. Dynamic responses of multispan nonuniform beam due to moving loads[J]. Journal of Structural Engineering, 1987, 113 (3): 458—474.
    [6] CloughR W, PenzienJ. Dynamics ofStructures[M]. McGraw-HillInc., NewYork, 1975.
    [7] MeirovitchL. AnalyticalMethods inVibrations[M]. Macmil-lanCompany, London, U. K., 1967.
    [8] PilkeyW D, ChangP Y. ModernFormulas forStatics andDynamics[M]. McGraw-HillBookCo., NewYork, 1978.
    [9] CaiC W, CheungY K, ChanH C. Dynamic response of infinitecontinuous beam s subjected to a moving force— an exactmethod[J]. Journal ofSound andVibration, 1988, 123 (3): 461—472.
    [10] DeanG Duffy. The response of an infinite railroad track to amoving, vibrating mass[J]. Journal ofAppliedMechanics, 1990, 57 (1): 66—73.
    [11] 郝瀛. 铁道工程[M]. 北京: 中国铁道出版社, 2000.
    [12] 曾庆元. 弹性系统总势能不变值原理[J]. 华中理工大学学报, 2000, 28 (1): 1—3. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200001000.htm

    ZENG Qing-yuan. The principle of total potential energy withstationary value in elastic system dynam ics[J]. Journal ofHuazhongU niversity ofScience andTechnology, 2000, 28 (1): 1-3. (inChinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200001000.htm
    [13] 曾庆元, 郭向荣. 列车桥梁时变系统振动分析理论与应用[M]. 北京: 中国铁道出版社, 1999.
    [14] 曾庆元, 杨平. 形成矩阵的"对号入座"法则与桁梁空间分析的桁段有限元法[J]. 铁道学报, 1986, 8 (2): 48—59. doi: 10.3321/j.issn:1001-8360.1986.02.006

    ZENG Qing-yuan, YANG Ping. The"set-in-right-position"rule for forming structural matrices and the finite truss-element method for space analysis of truss bridges[J]. Journal of the China Railway Society, 1986, 8 (2): 48-59. (inChinese). doi: 10.3321/j.issn:1001-8360.1986.02.006
    [15] ZENG Qing-yuan, L OU Ping, XIANG Jun. The principle of total potential energy with stationary value in elastic systemdynamics and its application to the analysis of vibration and dynamic stability[J]. Journal of Huazhong University ofScience andTechnology (UrbanScience), 2002, 19 (1): 7—14.
    [16] ZENG Qing-yuan, L OU Ping, XIANG Jun. The principle oftotal potential energy with stationary value in elastic systemdynamics and its vibration analysis[A ]. Proceedings of International Conference on Engineering and Technological Sciences 2000, Session5[C]. Beijing: SciencePress, 2000.183—193.
    [17] LOU Ping, ZENG Qing-yuan. On three approaches to formula-tion of the equations of motion of a dynamic system[J]. Journal of Structural Engineering (Madras), 2002, 29 (2): 119—123.
    [18] 李德建. 列车—轨道时变系统空间振动分析[D]. 长沙: 长沙铁道学院, 1996.
    [19] 郭文华. 中小跨度铁路桥梁横向刚度分析[D]. 长沙: 长沙铁道学院, 1999.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  110
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-10-25
  • 刊出日期:  2003-06-25

目录

    /

    返回文章
    返回