留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NURBS的船体曲面自适应三角网格剖分

史国友 贾传荧

史国友, 贾传荧. 基于NURBS的船体曲面自适应三角网格剖分[J]. 交通运输工程学报, 2006, 6(1): 84-88.
引用本文: 史国友, 贾传荧. 基于NURBS的船体曲面自适应三角网格剖分[J]. 交通运输工程学报, 2006, 6(1): 84-88.
SHI Guo-you, JIA Chuan-ying. Adaptive Triangular Mesh Generation of Ship Hull Surface Based on NURBS[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 84-88.
Citation: SHI Guo-you, JIA Chuan-ying. Adaptive Triangular Mesh Generation of Ship Hull Surface Based on NURBS[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 84-88.

基于NURBS的船体曲面自适应三角网格剖分

基金项目: 

交通部基础研究项目 200432922504

详细信息
    作者简介:

    史国友(1969-), 男, 安徽桐城人, 大连海事大学工学博士研究生, 从事航海动态仿真研究

  • 中图分类号: U661.32

Adaptive Triangular Mesh Generation of Ship Hull Surface Based on NURBS

More Information
  • 摘要: 针对面向曲面的三维船体性能计算和真实感图形显示问题, 应用NURBS曲线、曲面理论, 提出一种新颖的船体NURBS曲面三角形网格自动生成算法, 运用四角编码方法和改进的曲面片平坦性检验方法, 保证在递归分割船体NURBS曲面时, 能够快速有效地分割出四边形网格, 在曲面片的高度方向和边界处同时满足给定的精度要求, 在此基础上, 应用割角剖分算法将一个四边形网格剖分成两个或多个三角形网格。应用结果表明, 应用该算法生成的三角形平面片能够较好地逼近船体曲面, 避免出现网格间的裂缝, 与二叉树、四叉树方法相比, 四角编码方法明显节省了时间和空间, 提高了算法效率。

     

  • 图  1  变形的船首横剖线

    Figure  1.  Deformed Bow Transection Curves

    图  2  离散误差较大的曲面片

    Figure  2.  Surface with Biggish Subdivision Error

    图  3  曲面片边界离散

    Figure  3.  Subdivision of Surface Boundary

    图  4  节点矩阵

    Figure  4.  Node Matrix

    图  5  四角编码原理

    Figure  5.  Quadrangle Coding Principle

    图  6  曲面片的三角剖分

    Figure  6.  Surface Triangulation

    图  7  船体曲面的三角网格

    Figure  7.  Triangular Grids of Ship Hull Surface

    表  1  编码结果

    Table  1.   Coding Result

    umin umax vmin vmax
    曲面片1 1 3 2 4
    曲面片2 7 8 1 4
    下载: 导出CSV
  • [1] SCHWEITZER D, COBB E S. Scanline Rendering of Parametric Surfaces[J]. Computer Graphics, 1982, 16 (3): 265-274. doi: 10.1145/965145.801289
    [2] FILIP D, GOLDMAN R. Conversion from Bezier Rectangles to Bezier Triangles[J]. Computer Aided Design, 1987, 19 (1): 25-28. doi: 10.1016/0010-4485(87)90149-7
    [3] FILIP D, MAGEDSON R, MARKOT R. Surface Algorithms Using Bounds on Derivatives[J]. Computer Aided Geometric Design, 1987, 3 (4): 295-311.
    [4] 周建亮, 唐荣锡. NURBS曲面的自适应离散[J]. 工程图学学报, 1994, 15 (2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX402.000.htm

    ZHOU Jian-liang, TANG Rong-xi. Adaptive Subdivision of NURBS Surface[J]. Journal of Engineering Graphics, 1994, 15 (2): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX402.000.htm
    [5] 章仁江, 王国瑾. 参数曲面用插值三角平面片逼近的误差估计[J]. 计算数学, 2004, 26 (2): 170-178. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX200402004.htm

    ZHANG Ren-jiang, WANG Guo-jin. The Error Estimates for Approximating Paramtric Surface by Interpolated Plane Triangular Patch[J]. Mathematica Numerica Sinica, 2004, 26 (2): 170-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX200402004.htm
    [6] PIEGL L, TILLER W. The NURBS Book[M]. Berlin: Springer, 1997.
    [7] DEBOOR C. On Calculating with B-Splines[J]. Journal Approxi mation Theory, 1972, 6 (1): 50-62. doi: 10.1016/0021-9045(72)90080-9
    [8] FARI N G. Curves and Surfaces for Computer Aided Geometric Design[M]. San Diego: Academic Press, 1996.
    [9] 施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 北京航空航天大学出版社, 1994.
    [10] SHENG X, HIRSHB E. Triangulation of Trimmed Surfacein Parametric Space[J]. CAD, 1992, 24 (8): 437-444.
    [11] VIGO M, PLAN, BRUNETP. Directional Adaptive Surface Triangulation[J]. Computer Aided Geometric Design, 1999, 16 (2): 107-126. doi: 10.1016/S0167-8396(98)00040-5
    [12] COHEN E, LYCHE T, RIESENFELD R. Discrete B-Splinesand Subdivision Techniques in Computer aided Geometric Design and Computer Graphics[J]. Computer Graphics and Image Process, 1980, 14 (2): 87-111. doi: 10.1016/0146-664X(80)90040-4
    [13] VIGO M. An Improved Incremental Algorithmfor Constructing Restricted Delaunay Triangulations[J]. Computer and Graphics, 1997, 21 (2): 215-233. doi: 10.1016/S0097-8493(96)00085-4
    [14] PIEGL L, ARNAUD M. Algorithm and Data Structure for Triangulating Multiply Connected Polygonal Domains[J]. Computer and Graphics, 1993, 17 (5): 563-574. doi: 10.1016/0097-8493(93)90007-V
    [15] HERZEN V B, BARRALAN H. Accurate Triangulations of Deformed Intersecting Surfaces[J]. Computer and Graphics, 1987, 21 (4): 103-110. doi: 10.1145/37402.37415
    [16] NAKAJI MA N, TOKMASU S, KUNITOMO Y. Feather-Based Heuristics for Finite-Element Meshing Using Quadtress and Octrees[J]. CAD, 1992, 24 (12): 667-690.
    [17] SNYDER J, BARRALAN H. Ray Tracing Complex Models Containing Surface Tessellations[A]//Proeedings of 14th Annual Conference on Computer Graphics and Interactive Techniques[C]. New York: ACMPress, 1987.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  115
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-09-10
  • 刊出日期:  2006-03-25

目录

    /

    返回文章
    返回