-
摘要: 应用工程类比法对榆树沟隧道二次衬砌厚度进行了优化设计, 选取了Ⅱ类围岩浅埋、Ⅲ类围岩及Ⅳ类围岩三种不同的复合式衬砌结构类型, 对隧道开挖后围岩和初期支护的力学状态采用FLAC软件进行了模拟计算, 对二次衬砌的力学状态采用ANSYS软件进行了分析。结果表明三种衬砌结构类型的二次衬砌内力都较小, 最大轴力为165 kN, 最大弯矩为-15.97 kN.m, 且都发生在Ⅱ类浅埋断面, 二次衬砌的安全系数较大; 衬砌周边位移最大的是Ⅱ类围岩浅埋, 其洞周位移最大值(18 mm) 发生在拱脚处, 边墙围岩收敛较小, 且围岩越好, 周边位移越小; 现场监控量测的净空收敛数值均远小于允许收敛值, 二次衬砌接触压力的量测值均远小于规范计算值。可见, 二次衬砌工作状态良好, 安全储备较大, 减薄二次衬砌厚度的隧道结构是安全的。Abstract: Engineering analog method was adopted to take the secondary lining thickness optimum design of Yushugou tunnel, shallow-buried Ⅱ class rock, Ⅲ class rock and Ⅳ class rock, which are three different kinds of composite lining structure types, were selected, the software FLAC was used to take analog computation on the surrounding rock and primary support's strained condition after the tunnel was excavated, then the software ANSYS was used to take analytical computation on the strained condition of the secondary lining.Computation result indicates that the secondary lining's internal forces of three different kinds of lining structure types are less, the maximal stress is 165 kN, the maximal bending moment is-15.97 kN·m, and both of them happen in the section of shallow-buried Ⅱ class rock, the safety factor of the secondary lining is large; the maximal circumjacent displacement of the lining occurs in the situation of shallow buried Ⅱ class rock, the maximal displacement (18 mm) of the surrounding portal happens in spring, the surrounding rock displacement in side wall has a less convergence, the better the surrounding rock is, the smaller the circumjacent displacement is.The result of monitoring measurement indicates that the convergence of tunnel inner perimeter is far smaller than allowed convergence, the measured pressure values of contact surface in the secondary lining are smaller than the calculated values in specification, the secondary lining has good work condition and its safe provision is enough, so tunnel structure is safe when reducing the thickness of secondary lining.
-
表 1 设计参数
Table 1. Design parameters
围岩类别 初期支护 二次衬砌厚度/cm 喷射混凝土厚度/cm 锚杆 钢筋网间距/cm 钢架位置 拱、墙混凝土 仰拱混凝土 拱部、边墙 仰拱 位置 长度/m 间距/m Ⅱ 25 25 拱、墙 3.5 0.8 20×20 拱、墙、仰拱 40 40 Ⅲ 20 20 拱、墙 3.0 1.0 拱、墙 35 35 Ⅳ 15 - 拱 2.5 1.2 - 30 - 表 2 净空收敛量测结果
Table 2. Measuring result of headroom convergence
测试段 初期支护 二次衬砌 最大收敛值/mm 速率/ (mm·d-1) 允许值/mm 基本稳定速率/ (mm·d-1) 最大收敛值/mm 速率/ (mm·d-1) 稳定判据/ (mm·d-1) 第1测试段(Ⅲ) K2+748 3.44 0.029 18 ≤0.2 0.18 0.004 ≤0.01 0.21 0.004 第2测试段(Ⅳ) K3+248 - - 12 0.15 0.002 0.13 0.002 第3测试段(Ⅲ) K3+326K3+327K3+365 -0.821.650.65 -0.0140.0200.010 18 0.30 0.003 第4测试段(Ⅱ) K3+450 8.06 0.070 24 0.94 0.009 0.88 0.009 表 3 接触压力量测结果
Table 3. Measuring result of contact surface pressure
部位 第1测试段(Ⅲ类围岩) 第2测试段(Ⅳ类围岩) 第3测试段(Ⅲ类围岩) 第4测试段(Ⅱ类围岩) 按规范计算的围岩压力/kPa 测值/kPa 比值/% 测值/kPa 比值/% 测值/kPa 比值/% 测值/kPa 比值/% Ⅱ类 Ⅲ类 Ⅳ类 拱顶 4 3 7.0 9 1 1 6 2 250 136 76 拱左30° 15 11 0.0 - 5 4 5 2 279 137 71 拱右30° 61 45 0.8 1 6 4 6 2 279 137 71 拱左60° 21 20 - - 8 8 7 3 233 104 48 拱右60° 27 26 - - 6 6 20 9 233 104 48 拱左90° 25 61 11.0 100 7 17 43 33 125 41 11 拱右90° 31 76 7.0 64 6 15 5 4 125 41 11 左墙脚 43 105 9.0 82 9 22 21 1 125 41 11 右墙脚 6 16 10.0 91 4 10 32 26 125 41 11 注: 表中比值为接触压力的量测值与规范计算值之比。 表 4 侧压力系数
Table 4. Lateral-compression coefficient
部位 第1测试段(Ⅲ类围岩) K2+748 第3测试段(Ⅲ类围岩) 第4测试段(Ⅱ类围岩) K3+450 第2测试段(Ⅳ类围岩) K3+248 K3+327 K3+413 测值/kPa 比值 测值/kPa 比值 测值/kPa 比值 测值/kPa 比值 测值/kPa 比值 拱顶 46 - 87 - 139 - 53 - 7 - 拱左90° 13 0.28 0 - 18 0.13 0 - 11 1.57 拱右90° 7 0.15 3 0.03 8 0.06 26 0.49 7 1.00 注: 表中比值为拱左90° (拱右90°) 围岩压力的量测值与拱顶量测值之比, 即侧压力系数。 表 5 二次衬砌混凝土应力量测结果
Table 5. Measuring result of secondary lining's concrete stress
部位 第1测试断面 第2测试断面 第3测试断面 第4测试断面 备注 拱顶 0.83 1.56 0.71 1.08 C25喷射混凝土设计强度: 抗压强度为13.5 MPa; 抗拉强度为1.2 MPa。C25模注混凝土设计强度: 弯曲抗压为13.5 MPa; 轴心抗拉为1.33 MPa 拱左30° 0.05 0.34 0.39 0.75 拱右30° 0.12 0.42 0.61 1.10 拱左60° 0.09 - 0.71 0.79 拱右60° 0.43 - 0.73 0.38 拱左90° 0.17 0.94 0.22 0.75 拱右90° 0.48 1.03 0.24 0.94 左墙脚 0.64 0.89 0.33 0.33 右墙脚 0.55 0.94 0.40 0.85 -
[1] JTJ 026-90, 公路隧道设计规范[S]. [2] JTJ 024-94, 公路隧道施工技术规范[S]. [3] 关宝树. 隧道工程施工要点集[M]. 北京: 人民交通出版社, 2003. [4] 胡庆安, 夏永旭, 王文正, 等. 双连拱隧道施工过程的三维数值模拟[J]. 长安大学学报: 自然科学版, 2005, 25 (1): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200501012.htmHu Qing-an, Xia Yong-xu, Wang Wen-zheng, et al. 3-D numerical simulation on double-arch tunnel's construction process[J]. Journal of Chang'an University: Natural Science Edition, 2005, 25 (1): 48-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200501012.htm [5] 徐庆元, 周小林, 杨晓宇. 桥上无缝线路附加力计算模型[J]. 交通运输工程学报, 2004, 4 (1): 25-28. http://transport.chd.edu.cn/article/id/200401007Xu Qing-yuan, Zhou Xiao-lin, Yang Xiao-yu. Computation model of additional longitudinal forces of continuously welded rails on bridges[J]. Journal of Traffic and Transportation Engineering, 2004, 4 (1): 25-28. (in Chinese) http://transport.chd.edu.cn/article/id/200401007 [6] 王建宇. 隧道工程监测和信息化设计原理[M]. 北京: 中国铁道出版社, 1990. [7] 肖林萍, 赵玉光, 李永树. 单拱大跨隧道信息化施工监控量测技术研究[J]. 中国公路学报, 2005, 18 (4): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200504012.htmXiao Lin-ping, Zhao Yu-guang, Li Yong-shu. Research on field monitor monitor measuring techniques in informational construction of single arch long-span tunnel[J]. China Journa1 of Highway and Transport, 2005, 18 (4): 62-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200504012.htm [8] 王梦恕. 大瑶山隧道[M]. 广州: 广东科技出版社, 1994. [9] 徐干成. 地下工程支护结构[M]. 北京: 中国水利水电出版社, 2002. [10] 赵占厂, 谢永利, 杨晓华, 等. 黄土公路隧道衬砌受力特性测试研究[J]. 中国公路学报, 2004, 17 (1): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200401016.htmZhao Zhan-chang, Xie Yong-li, Yang Xiao-hua, et al. Observation research on the mechanical characteristic of highway tunnel liningin loess[J]. China Journa1 of Highway and Transport, 2004, 17 (1): 66-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200401016.htm [11] 秦皇岛市公路工程建设管理处, 河北省公路管理局, 长安大学. 公路隧道支护衬砌参数优化的研究[R]. 西安: 长安大学, 2003. [12] 吴波, 高波, 索晓明, 等. 城市地铁小间距隧道施工性态的力学模拟与分析[J]. 中国公路学报, 2005, 18 (3): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200503018.htmWu Bo, Gao Bo, Suo Xiao-ming, et al. Mechanical simulation and analysis of construction behavior of urban metro tunneling with small interval[J]. China Journal of Highway and Transport, 2005, 18 (3): 84-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200503018.htm [13] 肖林萍, 赵玉光, 李永树. 单拱大跨隧道信息化施工监控量测技术研究[J]. 中国公路学报, 2005, 18 (4): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200504012.htmXiao Lin-ping, Zhao Yu-guang, Li Yong-shu. Research on field monitor measu ring techniques in informational construction of single arch long—span tunnel[J]. China Journal of Highway and Transport, 2005, 18 (4): 62-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200504012.htm