-
摘要: 为了研究不同风速、风偏角在施工阶段对桥塔抖振性能的影响, 进行了考虑塔吊共同作用的桥塔联合气弹模型风洞试验。试验结果显示: 桥塔的抖振位移响应可近似地表示为风速的二次函数, 桥塔抖振响应随着风偏角的增加呈非单调变化, 施工状态中桥塔顺桥向和横桥向抖振位移响应最大值会出现在非正交风作用下; 在施工阶段设计风速下抖振位移响应最大值为0.2746m, 在工程可接受范围内, 试验得出的抖振位移响应均方根值显著大于抖振时域分析计算值, 说明桥塔风洞试验应考虑施工状态和施工机械对其抖振性能的影响。Abstract: In order to study the influences of different wind speeds and wind yawed angles on the buffeting performance of bridge tower during construction, a wind tunnel test of bridge tower aeroelastic model was made based on considering the action of tower crane.Test result shows that the buffeting displacement responses increase with the increase of wind speed, have a trend of conic curve approximately, the buffeting responses of bridge tower with the increase wind yawed angle is not monotonous, the longitudinal and lateral buffeting responses of bridge tower can reach their maximal values under non-cross wind attack; the maximal value during construction is 0.274 6 m under design wind speed, which is acceptable to the project, the test result of RMS(root mean square)is significantly greater than the analysis result in time domain, so buffeting analysis should consider the influence of construction stages and machineries in wind tunnel test.
-
Key words:
- bridge engineering /
- bridge tower /
- tower crane /
- aeroelastic model /
- wind tunnel test /
- time domain analysis /
- yawed wind /
- buffeting
-
表 1 气弹模型动力特性
Table 1. Dynamic properties of aeroelastic model
状态 振型特征 实桥频率/Hz 模型目标频率/Hz 实测频率/Hz 频率误差/% 阻尼比/% 1 桥塔面外1阶弯曲 0.190 6 4.860 6 5.07 4.3 1.94 桥塔面内1阶弯曲 0.482 8 12.312 4 12.21 -0.8 2.00 桥塔面内2阶弯曲 0.739 5 18.856 2 18.36 -2.6 1.23 2 桥塔面内1阶弯曲 0.327 3 8.346 2 8.82 5.7 1.10 桥塔面外1阶弯曲 0.385 6 9.832 3 9.47 -3.7 1.18 3 桥塔面内1阶弯曲 0.321 4 8.196 5 7.75 -5.5 1.43 桥塔面外1阶弯曲 0.404 9 10.325 5 9.90 -4.2 1.43 表 2 RMS值比较
Table 2. Comparison of RMS values
风偏角 0° 15° 30° 90° 计算值/mm 1.50 4.30 12.40 44.40 试验值/mm 4.60 38.70 51.20 45.20 试验值/计算值 3.07 9.04 4.13 1.02 -
[1] Simiu E, Scanlan R H. Wind Effects on Structures: Fundamentals and Applications to Design[M]. 3rd Edition. New York: John Wiley & Sons Inc., 1996. [2] JTG/T D60-01—2004, 公路桥梁抗风设计规范[S]. [3] 李加武. 湖北鄂东公路大桥主桥桥塔风洞试验研究[R]. 西安: 长安大学, 2006. [4] 朱乐东, 曹映泓, 丁泉顺, 等. 斜风作用下大跨度斜拉桥裸塔抖振性能[J]. 同济大学学报: 自然科学版, 2005, 33(7): 880-884.Zhu Le-dong, Cao Ying-hong, Ding Quan-shun, et al. Buffeting performance of free-standing tower of long-span cablestayed bridge under yawed wind[J]. Journal of Tongji University: Natural Science, 2005, 33(7): 880-884. (in Chinese) [5] 朱乐东, 王淼, 郭震山, 等. 斜风作用下大跨度斜拉桥双悬臂状态抖振性能[J]. 工程力学, 2006, 23(4): 86-92.Zhu Le-dong, Wang Miao, Guo Zhen-shan, et al. Buffeting performance of double-cantilever state of a long-span cable-stayed bridge under yawed wind[J]. Engineering Mechanics, 2006, 23(4): 86-92. (in Chinese) [6] 李永乐, 廖海黎, 强士中. 考虑桥塔风效应的斜拉桥时域抖振分析[J]. 空气动力学学报, 2005, 23(2): 228-233.Li Yong-le, Liao Hai-li, Qiang Shi-zhong. Effect of pylon stochastic wind field on buffeting response of long cable-stayed bridge[J]. Acta Aerodynamica Sinica, 2005, 23(2): 228-233. (in Chinese) [7] 胡晓伦, 陈艾荣, 韩万水, 等. 杭州湾跨海大桥风荷载响应[J]. 东南大学学报: 自然科学版, 2005, 35(S): 75-79.Hu Xiao-lun, Chen Ai-rong, Han Wan-shui, et al. Windload response of Hangzhou bay bridge[J]. Journal of Southeast University: Natural Science Edition, 2005, 35(S): 75-79. (in Chinese) [8] 杨咏漪, 廖海黎, 李永乐. 基于ANSYS的斜拉桥抖振时域实用分析方法[J]. 空气动力学学报, 2004, 22(4): 457-460.Yang Yong-yi, Liao Hai-li, Li Yong-le. Simplified buffeting analysis in time domain on the basis of ANSYS for cable-stayed bridge[J]. Acta Aerodynamica Sinica, 2004, 22(4): 457-460. (in Chinese) [9] 曹映泓. 大跨度桥梁非线性颤振和抖振时程分析[D]. 上海: 同济大学, 1999. [10] 韩万水, 陈艾荣. 考虑桥塔风场效应的斜拉桥抖振时域分析[J]. 工程力学, 2007, 24(1): 123-128.Han Wan-shui, Chen Ai-rong. Time-domain buffeting analysis of cable-stayed bridge considering pylon wind field[J]. Engineering Mechanics, 2007, 24(1): 123-128. (in Chinese) [11] 韩万水. 风-汽车-桥梁系统空间耦合振动研究[D]. 上海: 同济大学, 2006.