-
摘要: 为了精确检测城市信号控制路网中的路段动态行程时间, 分析了路段流量受交通信号控制策略影响的波动规律, 提出了基于交通量图偏移的路段行程时间计算方法。研究了不同断面交通量图的相似性, 根据最大相似度时交通量图的偏移, 计算了断面间路段动态行程时间, 并与调查结果进行了比较。比较结果表明: 在城市路网封闭路段, 平峰、高峰的不同时间长度内(5、10、20 min), 平均行程时间最大平均相对误差为7.1%, 因此, 计算方法可行。Abstract: In order to precisely monitor the dynamic travel time in urban road network with signal control, the fluctuation rule of traffic volume affected by signal control strategy was analyzed, and a travel time estimation method based on traffic volume diagram offset was proposed.The similarity of traffic volume diagrams under different cross sections was analyzed, the dynamic travel time between cross sections was computed according to the offset of traffic volume diagram when the maximum similarity was reached, and it was compared with the field survey data.Comparison result indicates that the maximum mean relative error of mean travel time is 7.1% for different time lengths (5, 10, 20 min) during peak and non-peak periods at the closed road segments of urban road network, so the method is feasible.
-
表 1 平峰时段计算结果
Table 1. Computation results during non-peak period
时间间隔/s 5 min数据(行程时间真值为28.4 s) 10 min数据(行程时间真值为27.9 s) 20 min数据(行程时间真值为28.8 s) 计算结果/s 误差/% 计算结果/s 误差/% 计算结果/s 误差/% 5 26.7 5.9 26.3 5.7 27.2 5.6 10 28.4 0.0 29.2 4.7 29.0 0.7 15 33.8 19.0 31.5 12.9 30.9 7.3 20 31.0 9.2 30.0 7.5 27.6 4.2 均值/s 30.0 29.3 28.7 均值误差/% 5.6 5.0 0.3 表 2 高峰时段计算结果
Table 2. Computation results during peak period
时间间隔/s 5 min数据(行程时间真值为29.6 s) 10 min数据(行程时间真值为29.4s) 20 min数据(行程时间真值为29.7s) 计算结果/s 误差/% 计算结果/s 误差/% 计算结果/s 误差/% 5 29.4 0.7 28.8 2.0 28.1 5.4 10 30.9 4.4 30.8 4.8 29.1 2.0 15 32.4 9.5 31.0 5.4 29.6 0.3 20 34.0 14.9 32.0 8.8 29.4 1.0 均值/s 31.7 30.7 29.1 均值误差/% 7.1 4.4 2.0 -
[1] WUNDERLICH K E, KAUFMAN D E, SMITH R L. Linktravel time prediction for decentralized route guidance archi-tectures[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1 (1): 4-14. doi: 10.1109/6979.869017 [2] RICE J, VAN ZWET E. Asimple and effective method for predicting travel times on freeways[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5 (3): 200-207. doi: 10.1109/TITS.2004.833765 [3] WU Chun-hsin, HO Jan-ming, LEE D T. Traveltime prediction with support vector regression[J]. IEEE Transactionson Intelligent Transportation Systems, 2004, 5 (4): 276-281. doi: 10.1109/TITS.2004.837813 [4] SUN Lu, YANGJun, MAHMASSANI H. Travel time estimation based on piecewise truncated quadratic speed trajectory[J]. Transportation Research Part A, 2008, 42 (1): 173-186. [5] 杨兆升. 关于智能运输系统的关键理论——综合路段行程时间预测的研究[J]. 交通运输工程学报, 2001, 1 (1): 65-67. doi: 10.3321/j.issn:1671-1637.2001.01.017YANG Zhao-sheng. Study on the synthetic link travel timeprediction model of key theory of ITS[J]. Journal of Traffic and Transportation Engineering, 2001, 1 (1): 65-67. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.01.017 [6] 杨晓光, 蔡润林, 庄斌. 基于车牌自动识别系统的城市道路行程时间预测算法[J]. 交通与计算机, 2005, 23 (3): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200503008.htmYANG Xiao-guang, CAI Run-lin, ZHUANG Bin. An algorithm for predicting urban travel time based on license auto-recognition system[J]. Computer and Communications, 2005, 23 (3): 29-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200503008.htm [7] 孙棣华, 董均宇, 廖孝勇. 基于GPS探测车的道路交通状态估计技术[J]. 计算机应用研究, 2007, 24 (2): 243-245. doi: 10.3969/j.issn.1001-3695.2007.02.081SUN Di-hua, DONG Jun-yu, LI AO Xiao-yong. Traffic parameter estimation based on GPS equipped probe vehicles[J]. Application Research of Computers, 2007, 24 (2): 243-245. (in Chinese) doi: 10.3969/j.issn.1001-3695.2007.02.081 [8] 邹亮, 徐建闽, 朱玲湘, 等. 基于浮动车移动检测与感应线圈融合技术的行程时间估计模型[J]. 公路交通科技, 2007, 24 (6): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200706025.htmZOU Liang, XUJian-min, ZHU Ling-xiang, et al. Estimation model of travel time based on fusion technique from probe vehicle and crossing data[J]. Journal of Highway and Transportation Research and Development, 2007, 24 (6): 114-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200706025.htm [9] 欧晓凌, 裘刚, 张毅, 等. 城市交通流信息相似性分析与研究[J]. 中南公路工程, 2003, 28 (2): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200302001.htmOU Xiao-ling, QI U Gang, ZHANG Yi, et al. Analysis of similarity for urban traffic volumes[J]. Central South Highway Engineering, 2003, 28 (2): 4-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200302001.htm [10] VLAHOGI ANNI EI, WEBBERJr C L, GEROLI MI NIS N, et al. Statistical characteristics of transitional queue conditions in signalized arterials[J]. Transportation Research Part C, 2007, 15 (6): 392-403.