-
摘要: 为有效求解带时间窗的动态车辆路径问题, 建立了该问题的数学模型, 通过计划周期分片, 将动态问题转换为一系列的静态子问题, 采用插入法构造初始解, 并将重定位法、节点交换法和2-opt*法3种线路间局部搜索方法, 以及2-opt法和Or-opt法2种线路内局部搜索方法的不同组合应用于初始解的改进, 分析了客户出现时间、地理位置分布与不同客户时间窗范围对线路选择的影响, 比较了标准算例的求解结果。结果表明: 在线路间进行局部搜索时, 重定位法的效果最好, 2-opt*法次之, 节点交换法的最差; 在线路内进行局部搜索时, 2-opt法优于Or-opt法; 当客户请求出现时间越早, 客户比较集中, 客户时间窗较宽的情况下, 使用的车辆数量较少, 整个线路的行驶距离较短, 客户延迟时间也较短。Abstract: In order to effectively solve dynamic vehicle routing problem with time windows, the mathematical model was established, the planning period was cut into slices, and the dynamic problem was partitioned into a series of static sub-problems, the initial solutions were constructed by intertion method.Three inter-route local search approaches including relocation, exchange and 2-opt*, and two intra-route local search approaches including 2-opt and Or-opt were introduced, different approaches were combined to improve initial solutions.The influences of arrival time, distribution of geographical location and time window range on route selection were analyzed, and the solving results of standard example were compared.Result shows that relocation method is the best, 2-opt* is the second and exchange is the worst for inter-route local search, 2-opt is better than Or-opt for intra-route local search, and the vehicle number, traveling distance and delay of all routes decrease with early requests, concentrated customers and wide time windows.
-
Key words:
- traffic planning /
- dynamic vehicle routing problem /
- local search /
- time window
-
表 1 局部搜索方法比较
Table 1. Comparison of local search approaches
方法 mu d tde min(d) max(d) avg(d) min(tde) max(tde) avg(tde) 重定位法与2-opt法 5.00 1 454.43 1 543.55 1 508.33 0.00 0.00 0.000 重定位法与Or-opt法 5.67 1 151.00 1 506.70 1 376.10 0.00 82.84 46.790 节点交换法与2-opt法 5.67 1 529.38 1 614.63 1 571.58 0.00 167.95 55.980 节点交换法与Or-opt法 5.67 1 541.05 1 664.61 1 616.32 0.00 397.00 222.177 2-opt*法与2-opt法 5.00 1 489.85 1 575.82 1 540.81 0.00 0.00 0.000 2-opt*法与Or-opt法 5.33 1 419.35 1 487.79 1 454.04 26.83 109.33 65.890 表 2 客户请求出现时间对线路的影响
Table 2. Effects of customer arrival times on routes
α 0.1 0.3 0.5 0.7 0.9 C101 mu 12.00 13.00 15.00 16.00 16.00 d min(d) 1 250.10 1 337.50 1 309.66 1 215.22 1 222.13 max(d) 1 279.74 1 344.48 1 404.51 1 215.22 1 222.13 avg(d) 1 259.98 1 342.15 1 357.04 1 215.22 1 222.13 tde min(tde) 0 0 0 0 0 max(tde) 0 0 0 0 0 avg(tde) 0 0 0 0 0 R101 mu 21.33 22.67 25.00 27.67 38.00 d min(d) 1 922.42 1 982.94 2 012.07 2 158.3 2 477.45 max(d) 1 956.73 2 009.11 2 036.39 2 230.59 2 477.45 avg(d) 1 940.21 1 995.37 2 020.18 2 193.58 2 477.45 tde min(tde) 0.00 23.33 75.67 215.44 575.19 max(tde) 0.00 23.33 75.67 215.44 575.19 avg(tde) 0.00 23.33 75.67 215.44 575.19 R201 mu 5.33 4.33 5.00 5.00 5.33 d min(d) 1 378.48 1 484.13 1 454.43 1 393.24 1 647.08 max(d) 1 410.83 1 556.35 1 543.55 1 587.68 1 740.04 avg(d) 1 399.91 1 513.18 1 508.33 1 507.05 1 695.81 tde min(tde) 0 0 0 0 0 max(tde) 0 0 0 0 0 avg(tde) 0 0 0 0 0 -
[1] 杨瑞臣, 周永付, 云庆夏. 寻找车辆最优路径的混合算法[J]. 交通运输工程学报, 2005, 5(1): 102-105. doi: 10.3321/j.issn:1671-1637.2005.01.024YANG Rui-chen, ZHOU Yong-fu, YUN Qing-xia. Hybrid algorithm for vehicle's optimal route[J]. Journal of Trafficand Transportation Engineering, 2005, 5(1): 102-105. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.01.024 [2] 胡大伟, 朱志强, 胡勇. 车辆路径问题的模拟退火算法[J]. 中国公路学报, 2006, 19(4): 123-126. doi: 10.3321/j.issn:1001-7372.2006.04.023HU Da-wei, ZHUZhi-qiang, HU Yong. Simulated annealing algorithmfor vehicle routing problem[J]. China Journal ofHighway and Transport, 2006, 19(4): 123-126. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.04.023 [3] 谢秉磊, 郭耀煌, 郭强. 动态车辆路径问题: 现状与展望[J]. 系统工程理论方法应用, 2002, 11(2): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-XTGL200202005.htmXIE Bing-lei, GUO Yao-huang, GUO Qiang. Dynamic vehicle routing problem: status and prospect[J]. Systems Engineering-Theory Methodology Applications, 2002, 11(2): 116-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTGL200202005.htm [4] BI ANCHI L. Notes on dynamic vehicle routing-the state of the art[R]. Lugano: Dalle Molle Institute for Artificial Intel-ligence, 2000. [5] DU T C, LI E Y, CHOU D. Dynamic vehicle problem for online B2Cdelivery[J]. The International Journal of Management Science, 2005, 33(1): 33-45. https://www.sciencedirect.com/science/article/pii/S0305048304000489 [6] LARSEN A. The dynamic vehicle routing problem[D]. Lyn-gby: Technical University of Denmark, 2001. [7] FABRI A, RECHT P. On dynamic pickup and delivery vehicle routing with several ti me windows and waiting ti mes[J]. Transportation Research Part B, 2006, 40(4): 335-350. https://www.sciencedirect.com/science/article/pii/S0191261505000585 [8] MONTEMANNI R, GAMBARDELLAL M, RIZZOLI AE, et al. Ant colony system for a dynamic vehicle routing problem[J]. Combinatorial Opti mization, 2005, 10(4): 327-343. doi: 10.1007/s10878-005-4922-6 [9] POTVI N J Y, XU Y, BENYAHI AI. Vehicle routing and scheduling with dynamic travel ti mes[J]. Computers and Operations Research, 2006, 33(4): 1129-1137. doi: 10.1016/j.cor.2004.09.015 [10] BRAEYSYO, GENDREAU M. Vehicle routingp roblem with time windows, part i: route construction and local search algorithms[J]. Transportation Science, 2005, 39(1): 104-118. doi: 10.1287/trsc.1030.0056