留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向实时短时交通流预测的过程神经元网络建模

宋国杰 胡程 谢昆青 彭锐

宋国杰, 胡程, 谢昆青, 彭锐. 面向实时短时交通流预测的过程神经元网络建模[J]. 交通运输工程学报, 2009, 9(5): 73-77. doi: 10.19818/j.cnki.1671-1637.2009.05.013
引用本文: 宋国杰, 胡程, 谢昆青, 彭锐. 面向实时短时交通流预测的过程神经元网络建模[J]. 交通运输工程学报, 2009, 9(5): 73-77. doi: 10.19818/j.cnki.1671-1637.2009.05.013
SONG Guo-jie, HU Cheng, XIE Kun-qing, PENG Rui. Process neural network modeling for real time short-term traffic flow prediction[J]. Journal of Traffic and Transportation Engineering, 2009, 9(5): 73-77. doi: 10.19818/j.cnki.1671-1637.2009.05.013
Citation: SONG Guo-jie, HU Cheng, XIE Kun-qing, PENG Rui. Process neural network modeling for real time short-term traffic flow prediction[J]. Journal of Traffic and Transportation Engineering, 2009, 9(5): 73-77. doi: 10.19818/j.cnki.1671-1637.2009.05.013

面向实时短时交通流预测的过程神经元网络建模

doi: 10.19818/j.cnki.1671-1637.2009.05.013
基金项目: 

国家自然科学基金项目 60703066

国家自然科学基金项目 60874082

详细信息
    作者简介:

    宋国杰(1975-), 男, 河南新乡人, 北京大学副教授, 从事智能信息处理与智能交通系统研究

  • 中图分类号: U491.14

Process neural network modeling for real time short-term traffic flow prediction

More Information
    Author Bio:

    SONG Guo-jie(1975-), male, associate professor, + 86-10-62754785, gjsong@pku.edu.cn

  • 摘要: 为了充分利用交通流的时空过程特性, 进行交通流的实时预测, 将过程神经元网络和数据流在线学习技术引入到短时交通流预测中。充分考虑交通流的日周期、周周期等内在特性, 结合过程神经元网络和小波变换, 实现对历史数据的多尺度过程特征处理。构建了路网整体预测过程神经元网络模型, 并采用主成分分析方法, 利用交通流空间相似性的影响对模型进行优化。基于Harr小波技术提出具有自适应和实时性预测特征的在线学习算法。试验结果表明: 该模型的预测准确性优于普通神经网络, 平均百分比相对误差降低6%~8%, 预测时间至少降低67%, 具有较高的性能, 能满足短时交通流实时预测的需求。

     

  • 图  1  过程神经元模型

    Figure  1.  Process neural model

    图  2  NPNN模型拓扑结构

    Figure  2.  Topological structure of NPNN model

    图  3  预测误差对比

    Figure  3.  Comparison of forecasting errors

    图  4  预测性能对比

    Figure  4.  Comparison of forecasting performances

    图  5  预测时间对比

    Figure  5.  Comparison of forecasting times

  • [1] SUN Shi-liang, ZHANG Chang-shui. The selective random subspace predictor for traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(2): 367-373. doi: 10.1109/TITS.2006.888603
    [2] YU Guo-qiang, ZHANG Chang-shui. Switching ARIMA model based forecasting for traffic flow[C]∥ IEEE. IEEE International Conference on Acoustics, Speech, Signal Processing. Quebec: IEEE, 2004: 429-432.
    [3] GHOSH B, BASU B, O'MAHONY M. Bayesian time-series model for short-term traffic flow forecasting[J]. Journal of Transportation Engineering, 2007, 133(3): 180-189. doi: 10.1061/(ASCE)0733-947X(2007)133:3(180)
    [4] 杨兆升, 朱中. 基于卡尔曼滤波理论的交通流量实时预测模型[J]. 中国公路学报, 1999, 12(3): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199903008.htm

    YANG Zhao-sheng, ZHU Zhong. A real-time traffic volume prediction model based on the Kalman filtering theory[J]. China Journal of Highway and Transport, 1999, 12(3): 63- 67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199903008.htm
    [5] 何兆成, 余志. 城市道路网络动态OD估计模型[J]. 交通运输工程学报, 2005, 5(2): 94-98. doi: 10.3321/j.issn:1671-1637.2005.02.023

    HE Zhao-cheng, YU Zhi. Dynamic OD estimation model of urban network[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 94-98. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.02.023
    [6] SUN Shi-liang, ZHANG Chang-shui, Yu Guo-qiang. A Bayesian network approach to traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 124-132. doi: 10.1109/TITS.2006.869623
    [7] 刘洁, 魏连雨, 杨春风. 基于遗传-神经网络的交通量预测[J]. 长安大学学报: 自然科学版, 2003, 23(1): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200301018.htm

    LIU Jie, WEI Lian-yu, YANG Chun-feng. Traffic prediction based on genetic-neural network[J]. Journal of Chang'an University: Natural Science Edition, 2003, 23(1): 68-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200301018.htm
    [8] 何新贵, 梁久祯. 过程神经元网络的若干理论问题[J]. 中国工程科学, 2000, 2(12): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200012007.htm

    HE Xin-gui, LIANG Jiu-zhen. Some theoretical issues on procedure neural networks[J]. Engineering Science, 2000, 2(12): 40-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200012007.htm
    [9] 何新贵, 许少华. 输入输出均为时变函数的过程神经网络及应用[J]. 软件学报, 2003, 14(4): 764-769. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB200304006.htm

    HE Xin-gui, XU Shao-hua. Process neural network with timevaried input and output functions and its applications[J]. Journal of Software, 2003, 14(4): 764-769. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB200304006.htm
    [10] SONG Guo-jie, YANG Dong-qing, WU Ling, et al. A mixed process neural network and its application to churn prediction in mobile communications[C]∥ IEEE. Proceedings of the 6th IEEE International Conference on Data Mining Workshop. Hong Kong: IEEE, 2006: 798-802.
    [11] RENAUD O, STARCK J L, MURTAGH F. Prediction based on a multiscale decomposition[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2003, 1(2): 217-232. doi: 10.1142/S0219691303000153
    [12] CHEN Shao-hui, SU Hong-bo, ZHANG Ren-hua, et al. Fusing remote sensing images usingàtrous wavelet transform and empirical mode decomposition[J]. Pattern Recognition Letters, 2007, 29(3): 330-342. http://pdfs.semanticscholar.org/0b17/e8bce056a8a9ddd3a0316917057efa2b8961.pdf
  • 加载中
图(5)
计量
  • 文章访问数:  716
  • HTML全文浏览量:  149
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-01
  • 刊出日期:  2009-10-25

目录

    /

    返回文章
    返回