-
摘要: 采用傅立叶逆变换将轨道不平顺功率谱密度转换为时域不平顺序列, 分析了美国轨道中心线各种不平顺的相关性。利用轨道中心线不平顺与左右轨道不平顺的关系, 将中心线轨道不平顺等效转换为左右轨道的垂向和横向不平顺, 通过车辆动力学仿真计算了轮轨作用力响应, 并比较了美国五级谱单侧不平顺与中国干线谱不平顺。比较结果表明: 各种中心线不平顺之间相关系数均小于0.3, 为微弱相关, 可视为统计独立的; 中心线轨道不平顺响应与等效后的左右轨道不平顺响应的相关系数均大于0.8, 为高度相关, 验证了等效转换的正确性; 美国五级谱单侧不平顺功率谱密度在低频部分高于中国干线谱, 在高频部分则低于中国干线谱。Abstract: The power spectrum density of track irregularity was transformed to time-domain irregularity by inverse Fourier transform, and the correlation of various irregularities of America center line was analyzed. The relation between center line and left/right rail irregularities was used to transform the center line irregularity to the irregularities of left and right rails, and the rail/wheel interaction force response was computed by the simulation of vehicle system dynamics. The one side irregularities of America five grade railway and Chinese main line was compared.Analysis result indicates that all correlation coefficients among the center line irregularities are less than 0.3, they are low correlative and are considered independent of each other. All correlation coefficients of wheel/rail responses between the center line and left/right rail irregularities were more than 0.8, they are high correlative, so the equivalency transform is right.The one side power spectrum density of America five grade railway is higher than that of the Chinese main line in low frequency and is less in high frequency.
-
表 1 不平顺相关系数
Table 1. Correlation coefficients of various track irregularities
不平顺种类 垂向不平顺 水平不平顺 方向不平顺 轨距不平顺 垂向不平顺 1.000 0 0.010 6 -0.063 5 0.030 6 水平不平顺 0.010 6 1.000 0 -0.005 9 -0.020 5 方向不平顺 -0.063 5 -0.005 9 1.000 0 -0.071 2 轨距不平顺 0.030 6 -0.020 5 -0.071 2 1.000 0 表 2 中国干线轨道谱的特征参数
Table 2. PSD characteristic parameters of Chinese main lines
参数 A B C D E F G 左高低 0.127 0 -2.153 1 1.550 3 4.983 5 1.389 1 -0.032 7 0.001 8 右高低 0.332 6 -1.375 7 0.549 7 2.490 7 0.405 7 0.085 8 -0.001 4 左轨向 0.062 7 -1.184 0 0.677 3 2.123 7 -0.084 7 0.034 0 -0.000 5 右轨向 0.159 5 -1.385 3 0.667 1 2.333 1 0.256 1 0.092 8 -0.001 6 -
[1] HECHT M. Gleislageuntersuchung aus fahrzeug-und ober-bautechuischer sicht, eutwicklung eines universellen dynamischen Messverfahrens[D]. Aachen: Aachen University of Technology, 1988. [2] 铁道部科学研究院. 我国干线轨道不平顺功率谱的研究[R]. 北京: 铁道部科学研究院, 1999.China academy of railway sciences. The research of the railway irregularity power spectrumin China main line[R]. Beijing: China academy of rail way sciences, 1999. (in Chinese) [3] 练松良, 刘扬, 杨文忠. 沪宁线轨道不平顺谱的分析[J]. 同济大学学报: 自然科学版, 2007, 35(10): 1342-1346. doi: 10.3321/j.issn:0253-374X.2007.10.010LIAN Song-liang, LIU Yang, YANG Wen-zhong. Analysis of track irregularity spectrum of Shanghai-Nanjing rail way[J]. Journal of Tongji University: Natural Science, 2007, 35(10): 1342-1346. (in Chinese) doi: 10.3321/j.issn:0253-374X.2007.10.010 [4] 曾志平, 余志武, 张向民, 等. 青藏铁路无缝线路试验段轨道不平顺功率谱分析[J]. 铁道科学与工程学报, 2008, 5(1): 37-40. doi: 10.3969/j.issn.1672-7029.2008.01.008ZENG Zhi-ping, YU Zhi-wu, ZHANG Xiang-min, et al. PSDanalysis of track irregularity of continuously welded rail track in test zone of Qinghai-Tibet rail way[J]. Journal of Rail way Science and Engineering, 2008, 5(1): 37-40. (in Chinese) doi: 10.3969/j.issn.1672-7029.2008.01.008 [5] 张曙光, 康熊, 刘秀波. 京津城际铁路轨道不平顺谱特征分析[J]. 中国铁道科学, 2008, 29(5): 25-30. doi: 10.3321/j.issn:1001-4632.2008.05.005ZHANG Shu-guang, KANG Xiong, LI U Xiu-bo. Characteristic analysis of the power spectral density(PSD)of track irregularity on Beijing-Tianjin intercity rail way[J]. China Rail way Science, 2008, 29(5): 25-30. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.05.005 [6] LIEBIG S, QUARZ V, KISS C, et al. The generation of track irregularities using periodic functions[C]∥Budapest University of Technology and Economics. 8th Mini Conference on Vehicle System Dynamics, Identification and Anomalies. Budapest: Budapest University of Technology and Economics, 2002: 137-142. [7] 陈果, 翟婉明. 铁路轨道不平顺随机过程的数值模拟[J]. 西南交通大学学报, 1999, 34(2): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htmCHEN Guo, ZHAI Wan-ming. Numerical si mulation of the stochastic process of rail way track irregularities[J]. Journal of Southwest Jiaotong University, 1999, 34(2): 138-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htm [8] 陈春俊, 李华超. 频域采样三角级数法模拟轨道不平顺信号[J]. 铁道学报, 2006, 28(3): 38-42. doi: 10.3321/j.issn:1001-8360.2006.03.008CHEN Chun-jun, LI Hua-chao. Trackirregularity simulation in frequency domain sampling[J]. Journal of the China Railway Society, 2006, 28(3): 38-42. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.03.008 [9] 晋智斌, 强士中, 李小珍. 时滞多维轨道不平顺激励的一致白噪声模型[J]. 西南交通大学学报, 2007, 42(3): 269-273. doi: 10.3969/j.issn.0258-2724.2007.03.003JIN Zhi-bin, QIANG Shi-zhong, LI Xiao-zhen. Uniform white noise model for time-delay multi-dimensional rail irregularity excitation[J]. Journal of Southwest Jiaotong University, 2007, 42(3): 269-273. (in Chinese) doi: 10.3969/j.issn.0258-2724.2007.03.003 [10] 肖守讷, 阳光武, 张卫华, 等. 基于谱密度函数的轨道随机不平顺仿真[J]. 中国铁道科学, 2008, 29(2): 28-32. doi: 10.3321/j.issn:1001-4632.2008.02.006XI AO Shou-ne, YANG Guang-wu, ZHANG Wei-hua, et al. Simulation of stochastic railway track irregularity based on spectrumdensity function[J]. China Railway Science, 2008, 29(2): 28-32. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.02.006 [11] 左玉云, 向俊. 郑武线轨道不平顺的相关性分析[J]. 铁道科学与工程学报, 2006, 3(1): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200601009.htmZUO Yu-yun, XIANGJun. Correlation analysis of trackirregularities of Zhengzhou-Wuhan railway[J]. Journal of Railway Science and Engineering, 2006, 3(1): 46-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200601009.htm