Green wave coordinated control optimization models oriented to different bidirectional bandwidth demands
-
摘要: 通过引入绿波带宽分配影响因子与带宽需求比例系数, 构造了一种新的绿波协调控制模型性能指标函数通式, 针对MAXBAND(MULTIBAND)模型与通用双向绿波协调控制模型, 分别建立了面向双向不同带宽需求的最大绿波协调控制优化模型, 并对是否可以获得双向绿波带宽的两种情况, 比较了控制模型改进前后的设计效果。分析结果表明: 在难以获得双向绿波协调控制效果的情况下, 优化模型将适当选用单向绿波协调控制方式, 以确保单向绿波带宽达到最大, 并优先满足带宽需求较高行驶方向的设计要求; 在可以获得一定双向绿波协调控制效果的情况下, 优化模型将实现双向绿波带宽之和最大, 并尽量根据双向带宽需求比为各个方向合理分配实际带宽。可见, 优化模型合理有效。Abstract: A new performance index function of green wave coordinated control model was built by introducing bandwidth proration impact factor and bandwidth demand ratio.The green wave coordinated control optimization models oriented to different bidirectional bandwidth demands were proposed for MAXBAND(MULTIBAND) model and general bidirectional green wave coordinated control model respectively.Two cases that bidirectional green wave bandwidths existed or not were considered, and the design effects of different control models were compared.Analysis result indicates that when the coordinated control effect of bidirectional green wave could not be achieved, the optimization model will choose one-way green wave coordination control to guarantee maximum total bandwidth and prorate the bandwidth fully to the direction with higher bandwidth demand.While the coordinated control effect of bidirectional green wave could be achieved, the optimization model will not only guarantee maximum total bandwidth, but also prorate the bandwidth according to the bandwidth demand ratios of different directions.So the models are reasonable and effective.
-
表 1 算例1的基本参数
Table 1. Basic parameters of example 1
表 2 基于改进通用双向绿波协调控制模型的案例分析
Table 2. Case analysis based on improved general model oriented to bidirectional green wave coordinated control
表 3 算例2的基本参数
Table 3. Basic parameters of example 2
表 4 不同控制模型的计算结果
Table 4. Calculation results of different control models
-
[1] MORGANJ T, LITTLEJ D C. Synchronizing traffic signals for maxi mal bandwidth[J]. Operations Research, 1964, 12(6): 896-912. doi: 10.1287/opre.12.6.896 [2] LITTLE J D C. The synchronization of traffic signals by mixed-integer linear programming[J]. Operations Research, 1966, 14(4): 568-594. doi: 10.1287/opre.14.4.568 [3] LITTLE J D C, KELSON M D, GARTNER N H. MAX-BAND: a versatile program for setting signals on arteries and triangular networks[R]. Cambridge: Massachusetts Institute of Technology, 1981. [4] MESSER CJ, WHITSONR H, DUDEKC L, et al. A variable-sequence multiphase progression optimization program[J]. High-way Research Record, 1973(445): 24-33. [5] CHANG E C P, MESSER C J. Arterial signal timing optimization using passer Ⅱ-90-program user's manual[R]. Austin: Texas A & M University System, 1991. [6] CHAUDHARY N A, MESSER C J. Passer Ⅳ-96, version 2.1, user/reference manual[R]. Austin: Texas A & M University System, 1996. [7] GARTNER N H, ASSMANN S F, LASAGA F, et al. MULTIBAND—a variable-bandwidth arterial progression scheme[J]. Transportation Research Record, 1990(1287): 212-222. [8] GARTNER N H, ASSMANN S F, LASAGA F, et al. AMULTIBAND approachto arterial traffic signal optimization[J]. Transportation Research Part B: Methodological, 1991, 25(1): 55-74. doi: 10.1016/0191-2615(91)90013-9 [9] STAMATI ADIS C, GARTNER N H. MULTIBAND-96: aprogram for variable-bandwidth progression optimization of multiarterial traffic networks[J]. Transportation Research Record, 1996(1554): 9-17. [10] GARTNER N H, STAMATI ADIS C. Arterial-based control of traffic flow in urban grid networks[J]. Mathematical and Computer Modelling, 2002, 35(5): 657-671. [11] 卢凯, 徐建闽, 叶瑞敏. 经典干道协调控制信号配时数解算法的改进[J]. 公路交通科技, 2009, 26(1): 120-124, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200901023.htmLU Kai, XU Jian-min, YE Rui-min. Improvement of classical algebraic method of signal timing for arterial road coordinate control[J]. Journal of Highway and Transportation Research and Development, 2009, 26(1): 120-124, 129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200901023.htm [12] LU Shou-feng, LI U Xi-min, DAI Shi-qiang. Revised MAX-BAND model for bandwidth optimization of traffic flow dispersion[C]∥IEEE. 2008 ISECS International Colloquiumon Computing, Communication, Control, and Management. Guangzhou: IEEE, 2008: 85-89. [13] 王殿海, 李凤, 宋现敏. 干线协调控制中公共周期优化方法研究[J]. 交通信息与安全, 2009, 27(5): 10-13, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200905004.htmWANG Dian-hai, LI Feng, SONG Xian-min. Public cycleoptimal method at arterial signal progression[J]. Journal of Transport Information and Safety, 2009, 27(5): 10-13, 23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200905004.htm [14] 陈宁宁, 何兆成, 余志. 考虑动态红灯排队消散时间的改进MAXBAND模型[J]. 武汉理工大学学报: 交通科学与工程版, 2009, 33(5): 843-847. doi: 10.3963/j.issn.1006-2823.2009.05.008CHEN Ning-ning, HE Zhao-cheng, YU Zhi. Revised MAX-BAND model considered variable queue clearance time[J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2009, 33(5): 843-847. (in Chinese) doi: 10.3963/j.issn.1006-2823.2009.05.008 [15] 卢凯, 徐建闽, 李轶舜. 进口单独放行方式下的干道双向绿波协调控制数解算法[J]. 中国公路学报, 2010, 23(3): 95-101. doi: 10.3969/j.issn.1001-7372.2010.03.015LU Kai, XU Jian-min, LI Yi-shun. Algebraic method of arterial road coordinate control for bidirectional green wave under signal design mode of one-phase-one-approach[J]. China Journal of Highway and Transport, 2010, 23(3): 95-101. (in Chinese) doi: 10.3969/j.issn.1001-7372.2010.03.015 [16] 卢凯, 徐建闽, 陈思溢, 等. 通用干道双向绿波协调控制模型及其优化求解[J]. 控制理论与应用, 2011, 28(4): 551-555. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201104018.htmLU Kai, XUJian-min, CHEN Si-yi, et al. A general modelof bidirectional green wave for coordinate control of arterial road and its opti mization solution[J]. Control Theory & Applications, 2011, 28(4): 551-555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201104018.htm -