留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动车辆检测与跟踪方法

娄路 赵玲 耿涛

娄路, 赵玲, 耿涛. 运动车辆检测与跟踪方法[J]. 交通运输工程学报, 2012, 12(4): 107-113. doi: 10.19818/j.cnki.1671-1637.2012.04.014
引用本文: 娄路, 赵玲, 耿涛. 运动车辆检测与跟踪方法[J]. 交通运输工程学报, 2012, 12(4): 107-113. doi: 10.19818/j.cnki.1671-1637.2012.04.014
LOU Lu, ZHAO Ling, GENG Tao. Detecting and tracking method of moving vehicle[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 107-113. doi: 10.19818/j.cnki.1671-1637.2012.04.014
Citation: LOU Lu, ZHAO Ling, GENG Tao. Detecting and tracking method of moving vehicle[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 107-113. doi: 10.19818/j.cnki.1671-1637.2012.04.014

运动车辆检测与跟踪方法

doi: 10.19818/j.cnki.1671-1637.2012.04.014
基金项目: 

国家自然科学基金项目 61004118

重庆市自然科学基金项目 cstc2011jjA40030

详细信息
    作者简介:

    娄路(1969-), 男, 重庆綦江人, 重庆交通大学讲师, 从事智能交通系统研究

  • 中图分类号: U491.116

Detecting and tracking method of moving vehicle

More Information
  • 摘要: 为提高城市智能交通综合管理能力, 提出了基于视频分析的运动车辆检测与跟踪方法。在城市交通干道路面环境中, 根据运动目标与道路背景统计特性的差异, 基于贝叶斯概率准则, 提出一个自适应背景更新算法, 检测分离运动车辆目标前景, 采用卡尔曼滤波器实现对视频序列中车辆目标的运动检测与实时跟踪, 并对在重庆某交通干道的交通流视频进行检测。试验结果表明: 该方法在常规视频分辨率下能实现实时处理视频, 平均检测准确率为94%, 具有较好的实时性与鲁棒性, 能够实现城市交通环境中各类运动车辆的检测与跟踪。

     

  • 图  1  算法流程

    Figure  1.  Algorithm flow

    图  2  三种算法的比较

    Figure  2.  Comparison of 3 algorithms

    图  3  车辆轮廓提取

    Figure  3.  Vehicle's contour extraction

    图  4  运动车辆跟踪流程

    Figure  4.  Tracking flow of moving vehicle

    图  5  车辆检测与跟踪结果

    Figure  5.  Vehicle detecting and tracking result

    表  1  高分辨率视频试验结果

    Table  1.   Experimental result of high resolution video

    车型 实际数/veh 检测数/veh 误检数/veh 检测率/%
    小车 25 28 3 88
    大车 4 5 1 75
    摩托车 3 3 0 100
    总数 32 36 4 87
    下载: 导出CSV

    表  2  低分辨率视频试验结果

    Table  2.   Experimental result of low resolution video

    车型 实际数/veh 检测数/veh 误检数/veh 检测率/%
    小车 116 113 3 97
    大车 15 12 3 80
    摩托车 11 9 2 82
    总数 142 134 8 94
    下载: 导出CSV
  • [1] 杨国亮, 王志良, 牟世堂, 等. 一种改进的光流算法[J]. 计算机工程, 2006, 32(15): 187-188, 226. doi: 10.3969/j.issn.1000-3428.2006.15.066

    YANG Guo-liang, WANG Zhi-liang, MU Shi-tang, et al. An improved optical flow algorithm[J]. Computer Engineering, 2006, 32(15): 187-188, 226. (in Chinese) doi: 10.3969/j.issn.1000-3428.2006.15.066
    [2] 郑锦, 李波. 视频序列中运动对象检测技术的研究现状与展望[J]. 计算机应用研究, 2008, 25(12): 3534-3540. doi: 10.3969/j.issn.1001-3695.2008.12.004

    ZHENG Jin, LI Bo. Prospects and current studies on motion object detection in video sequences[J]. Application Research of Computers, 2008, 25(12): 3534-3540. (in Chinese) doi: 10.3969/j.issn.1001-3695.2008.12.004
    [3] 查成东, 王长松, 崔巍. 背景差方法在复杂场景条件下的应用[J]. 计算机工程与设计, 2008, 29(4): 894-895. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ200804040.htm

    ZHA Cheng-dong, WANG Chang-song, CUI Wei. Application of background subtraction under complex scene[J]. Computer Engineering and Design, 2008, 29(4): 894-895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ200804040.htm
    [4] 田军, 魏振华, 武思远. 能量法的自适应背景更新算法[J]. 计算机科学与探索, 2009, 3(2): 218-224. doi: 10.3778/j.issn.1673-9418.2009.02.010

    TIAN Jun, WEI Zhen-hua, WU Si-yuan. A self-adaptive background updating algorithm of energy method[J]. Journal of Frontiers of Computer Science and Technology, 2009, 3(2): 218-224. (in Chinese) doi: 10.3778/j.issn.1673-9418.2009.02.010
    [5] SONG K T, TAI J C. Real-time background estimation of traffic imagery using group-based histogram[J]. Journal of Information Science and Engineering, 2008(24): 411-423.
    [6] TANIGUCHI H, NAKAMURA T, FURUSAWA H. Methods of traffic flow measurement using spatio-temporal image[C]∥ IEEE. Proceedings of 1999 International Conference on Image processing. Kobe: IEEE, 1999: 16-20.
    [7] WAKABAYASHI Y, AOKI M. Traffic flow measurement using stereo slit camera[C]∥IEEE. Proceedings of the 7th international Conference on Intelligent Transportation Systems. Washington DC: IEEE, 2004: 7-12.
    [8] KOLLER D, WEBER J, HUANG T, et al. Towards robust automatic traffic scene analysis in real-time[C]∥IEEE. Proceeding of the 33rd of IEEE Conference on Pattern Recognition. Jerusalem: IEEE, 1994: 126-131.
    [9] JUN G, AGGARWAL J K, GOKMEN M. Tracking and segmentation of highway vehicles in cluttered and crowded scenes[C]∥IEEE. Proceedings of the 2008 IEEE Workshop on Applications of Computer Vision. Copper Mountain: IEEE, 2008: 1-6.
    [10] 赵宇. 视频处理中的目标分割与跟踪的研究[D]. 北京: 中国科学院, 2004.

    ZHAO Yu. The research of object segmentation and tracking in video processing[D]. Beijing: Chinese Academy of Sciences, 2004. (in Chinese)
    [11] TAMERSOY B, AGGARWAL J K. Robust vehicle detection for tracking in highway surveillance videos using unsupervised learning[C]∥IEEE. Proceedings of the 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance. Genova: IEEE, 2009: 529-534.
    [12] LI Li-yuan, HUANG Wei-min, GUI Y, et al. Statistical modeling of complex backgrounds for foreground object detection[J]. IEEE Transactions on Image Processing, 2004, 13(11): 1459-1472. doi: 10.1109/TIP.2004.836169
    [13] 袁基炜, 史忠科. 一种基于灰色预测模型GM(1, 1) 的运动车辆跟踪方法[J]. 控制与决策, 2006, 21(3): 300-304. doi: 10.3321/j.issn:1001-0920.2006.03.014

    YUAN Ji-wei, SHI Zhong-ke. A method of vehicle tracking based on GM(1, 1)[J]. Control and Decision, 2006, 21(3): 300-304. (in Chinese) doi: 10.3321/j.issn:1001-0920.2006.03.014
    [14] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME—Journal of Basic Engineering, 1960(82): 35-45.
    [15] STORVIK G. Particle filters for state space models with the presence of unknown static parameters[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 281-289. doi: 10.1109/78.978383
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  921
  • HTML全文浏览量:  149
  • PDF下载量:  1177
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-13
  • 刊出日期:  2012-08-25

目录

    /

    返回文章
    返回