-
摘要: 针对短时交通流变化周期性与随机性的特点, 提出了新的混合预测模型, 包含非参数回归模型与BP神经网络模型2种单项模型。非参数回归模型利用相关历史交通流数据, 通过数据库匹配操作, 确定预测结果, 以充分体现交通流的周期稳定性。采用3层BP神经网络模型反映交通流的动态与非线性特点。采用模糊控制算法确定各单项模型的权重, 并按不同权重有效组合成新的混合模型。采用西安市某路段30 d的交通流量数据验证混合模型的预测效果。试验结果表明: 该混合模型的平均相对误差为1.26%, 最大相对误差为3.53%, 其预测精度明显高于单项模型单独预测时的精度, 能较准确地反映交通流真实情况。Abstract: A new hybrid prediction model including two single models of nonparametric regression model and BP neural network model was proposed according to the periodicity and randomness properties of short-term traffic flow.Relevant historical traffic flow data were used in nonparametric regression model to make the prediction result abtained from the databases matching proceeding fully illustrate the cyclical stability of traffic flow.Three-tier BP neural network model was used to reflect the dynamic and nonlinear characters of traffic flow.Fuzzy control algorithm was adopted to get the weight coefficient of each model.New mixed model was constituted by the two single models according to different weight coefficients.The prediction effect of hybrid prediction model was verified by the traffic flow data in 30 d from a certain section in Xi'an.Experimental result indicates that the average relative error of mixed model is 1.26%, and its maximum relative error is 3.53%, so the prediction accuracy of mixed model is obviously higher than two single models, and can accurately reflect the real situation of traffic flow.
-
表 1 模糊变量的定义
Table 1. Definitions of fuzzy variables
表 2 部分模糊规则定义
Table 2. Definitions of partial fuzzy rules
表 3 中间层神经元个数
Table 3. Neuron numbers of middle layer
表 4 输入量的预测结果
Table 4. Prediction result of inputs
表 5 评价指标对比
Table 5. Comparison of evaluation indexes
表 6 不同数据库规模下3种方法的预测结果
Table 6. Prediction results of three methods under different database sizes
-
[1] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: agenetic approach[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(3): 211-234. doi: 10.1016/j.trc.2005.04.007 [2] 王进. 短期交通流预测模型与方法研究[D]. 北京: 清华大学, 2005.WANG Jin. Studies on short-term traffic flow forecasting models and methods[D]. Beijing: Tsinghua University, 2005. (in Chinese). [3] 戴施华, 周欣荣. Kalman滤波理论在短时交通预测上的应用[J]. 哈尔滨商业大学学报: 自然科学版, 2005, 21(6): 728-730, 735. doi: 10.3969/j.issn.1672-0946.2005.06.014DAI Shi-hua, ZHOU Xin-rong. Application of Kalman filtering theory on prediction of short-term traffic volume[J]. Journal of Harbin University of Commerce: Natural Sciences Edition, 2005, 21(6): 728-730, 735. (in Chinese). doi: 10.3969/j.issn.1672-0946.2005.06.014 [4] 宫晓燕, 汤淑明. 基于非参数回归的短时交通流量预测与事件检测综合算法[J]. 中国公路学报: 2003, 16(1): 82-86.GONG Xiao-yan, TANG Shu-ming. Integrated traffic flow forecasting and traffic incident detection algorithm based on non-parametric regression[J]. China Journal of Highway and Transport, 2003, 16(1): 82-86. (in Chinese). [5] 高慧, 赵建玉, 贾磊. 短时交通流预测方法综述[J]. 济南大学学报: 自然科学版, 2008, 22(1): 88-94. doi: 10.3969/j.issn.1671-3559.2008.01.024GAO Hui, ZHAO Jian-yu, JIA Lei. Summary of short-time traffic flow forecasting methods[J]. Journal of University of Jinan: Science and Technology, 2008, 22(1): 88-94. (in Chinese). doi: 10.3969/j.issn.1671-3559.2008.01.024 [6] 赵建玉, 贾磊, 杨立才, 等. 基于粒子群优化的RBF神经网络交通流预测[J]. 公路交通科技, 2006, 23(7): 116-119. doi: 10.3969/j.issn.1002-0268.2006.07.028ZHAO Jian-yu, JIA Lei, YANG Li-cai, et al. RBF neural network traffic flow forecasting model based on particle swarm optimization[J]. Journal of Highway and Transportation Research and Development, 2006, 23(7): 116-119. (in Chinese). doi: 10.3969/j.issn.1002-0268.2006.07.028 [7] 况爱武, 黄中祥. 基于RBF神经网络的短时交通流预测[J]. 系统工程, 2004, 22(2): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200402012.htmKUANG Ai-wu, HUANG Zhong-xiang. Short-term traffic flow prediction based on RBF neural network[J]. Systems Engineering, 2004, 22(2): 63-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200402012.htm [8] MAI T, GHOSH B, WILSON S. Multivariate short-term traffic flow forecasting using Bayesian vector autoregressive moving average model[C]∥TRB. Transportation Research Board91 st Annual Meeting. Washington DC: TRB, 2012: 3728-3740. [9] CASTRO-NETO M, JEONG Y S, JEONG M K, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2009, 36(3): 6164-6173. doi: 10.1016/j.eswa.2008.07.069 [10] ZHANG Yang, LIU Yun-cai. Application of combined fore-casting models to intelligent transportation systems[J]. Studies in Computational Intelligence, 2009, 214(10): 181-186. doi: 10.1007/978-3-540-92814-0_28 [11] 李元诚, 李波, 方廷健. 基于小波支持向量机的非线性组合预测方法研究[J]. 信息与控制, 2004, 33(3): 303-306, 324. doi: 10.3969/j.issn.1002-0411.2004.03.011LI Yuan-cheng, LI Bo, FANG Ting-jian. Nonlinear combin-ation forecasting method based on wavelet support vector machines[J]. Information and Control, 2004, 33(3): 303-306, 324. (in Chinese). doi: 10.3969/j.issn.1002-0411.2004.03.011 [12] 谭满春, 冯荦斌, 徐建闽. 基于ARIMA与人工神经网络组合模型的交通流预测[J]. 中国公路学报, 2007, 20(4): 118-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200704022.htmTAN Man-chun, FENG Luo-bin, XU Jian-min. Traffic flow prediction based on hybrid ARIMA and ANN model[J]. China Journal of Highway and Transport, 2007, 20(4): 118-121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200704022.htm [13] DAVIS G A, NIHAN N L. Nonparametric regression and short-term freeway traffic forecasting[J]. Journal of Trans-portation Engineering, 1991, 117(2): 178-188. doi: 10.1061/(ASCE)0733-947X(1991)117:2(178) [14] SMITH B L, WILLIAMS B M, OSWALD R K. Comparison of parametric and nonparametric models for traffic flow fore-casting[J]. Transportation Research Part C: Emerging Tech-nologies, 2002, 10(4): 303-321. doi: 10.1016/S0968-090X(02)00009-8 [15] 甘健胜, 陈国龙. 线性组合预测模型及其应用[J]. 计算机科学, 2006, 33(9): 191-194. doi: 10.3969/j.issn.1002-137X.2006.09.058GAN Jian-sheng, CHEN Guo-long. Linear combination fore-casting model and its application[J]. Computer Science, 2006, 33(9): 191-194. (in Chinese). doi: 10.3969/j.issn.1002-137X.2006.09.058 [16] 饶从军, 王成, 涂火年. 一种新的预测模型及其应用[J]. 武汉理工大学学报: 交通科学与工程版, 2007, 31(6): 1098-1101. doi: 10.3963/j.issn.2095-3844.2007.06.041RAO Cong-jun, WANG Cheng, TU Huo-nian. Novel fore-casting model and its application[J]. Journal of Wuhan University of Technology: Transportation Science and Engin-eering, 2007, 31(6): 1098-1101. (in Chinese). doi: 10.3963/j.issn.2095-3844.2007.06.041