留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短时交通流预测模型

樊娜 赵祥模 戴明 安毅生

樊娜, 赵祥模, 戴明, 安毅生. 短时交通流预测模型[J]. 交通运输工程学报, 2012, 12(4): 114-119. doi: 10.19818/j.cnki.1671-1637.2012.04.015
引用本文: 樊娜, 赵祥模, 戴明, 安毅生. 短时交通流预测模型[J]. 交通运输工程学报, 2012, 12(4): 114-119. doi: 10.19818/j.cnki.1671-1637.2012.04.015
FAN Na, ZHAO Xiang-mo, DAI Ming, AN Yi-sheng. Short-term traffic flow prediction model[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 114-119. doi: 10.19818/j.cnki.1671-1637.2012.04.015
Citation: FAN Na, ZHAO Xiang-mo, DAI Ming, AN Yi-sheng. Short-term traffic flow prediction model[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 114-119. doi: 10.19818/j.cnki.1671-1637.2012.04.015

短时交通流预测模型

doi: 10.19818/j.cnki.1671-1637.2012.04.015
基金项目: 

国家自然科学基金项目 50978030

长江学者和创新团队发展计划项目 IRT0951

陕西省自然科学基金项目 2009-jm8002-1

中央高校基本科研业务费专项资金项目 CHD2011JC027

中央高校基本科研业务费专项资金项目 CHD2011JC056

详细信息
    作者简介:

    樊娜(1978-), 女, 陕西渭南人, 长安大学讲师, 工学博士, 从事交通信息控制研究

  • 中图分类号: U491.14

Short-term traffic flow prediction model

More Information
    Author Bio:

    FAN Na (1978-), female, lecturer, PhD, +86-29-82334763, fnsea@163.com

  • 摘要: 针对短时交通流变化周期性与随机性的特点, 提出了新的混合预测模型, 包含非参数回归模型与BP神经网络模型2种单项模型。非参数回归模型利用相关历史交通流数据, 通过数据库匹配操作, 确定预测结果, 以充分体现交通流的周期稳定性。采用3层BP神经网络模型反映交通流的动态与非线性特点。采用模糊控制算法确定各单项模型的权重, 并按不同权重有效组合成新的混合模型。采用西安市某路段30 d的交通流量数据验证混合模型的预测效果。试验结果表明: 该混合模型的平均相对误差为1.26%, 最大相对误差为3.53%, 其预测精度明显高于单项模型单独预测时的精度, 能较准确地反映交通流真实情况。

     

  • 图  1  非参数回归模型预测流程

    Figure  1.  Prediction procedure of nonparametric regression model

    图  2  预测路段与上游路段交通流量的关系

    Figure  2.  Relationship of traffic flows between prediction section and upstream sections

    图  3  试验路段

    Figure  3.  Test sections

    图  4  三种模型预测结果对比

    Figure  4.  Comparison of prediction result in 3 models

    图  5  预测结果与实测数据对比

    Figure  5.  Comparison between prediction result and real data

    表  1  模糊变量的定义

    Table  1.   Definitions of fuzzy variables

    下载: 导出CSV

    表  2  部分模糊规则定义

    Table  2.   Definitions of partial fuzzy rules

    下载: 导出CSV

    表  3  中间层神经元个数

    Table  3.   Neuron numbers of middle layer

    下载: 导出CSV

    表  4  输入量的预测结果

    Table  4.   Prediction result of inputs

    下载: 导出CSV

    表  5  评价指标对比

    Table  5.   Comparison of evaluation indexes

    下载: 导出CSV

    表  6  不同数据库规模下3种方法的预测结果

    Table  6.   Prediction results of three methods under different database sizes

    下载: 导出CSV
  • [1] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: agenetic approach[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(3): 211-234. doi: 10.1016/j.trc.2005.04.007
    [2] 王进. 短期交通流预测模型与方法研究[D]. 北京: 清华大学, 2005.

    WANG Jin. Studies on short-term traffic flow forecasting models and methods[D]. Beijing: Tsinghua University, 2005. (in Chinese).
    [3] 戴施华, 周欣荣. Kalman滤波理论在短时交通预测上的应用[J]. 哈尔滨商业大学学报: 自然科学版, 2005, 21(6): 728-730, 735. doi: 10.3969/j.issn.1672-0946.2005.06.014

    DAI Shi-hua, ZHOU Xin-rong. Application of Kalman filtering theory on prediction of short-term traffic volume[J]. Journal of Harbin University of Commerce: Natural Sciences Edition, 2005, 21(6): 728-730, 735. (in Chinese). doi: 10.3969/j.issn.1672-0946.2005.06.014
    [4] 宫晓燕, 汤淑明. 基于非参数回归的短时交通流量预测与事件检测综合算法[J]. 中国公路学报: 2003, 16(1): 82-86.

    GONG Xiao-yan, TANG Shu-ming. Integrated traffic flow forecasting and traffic incident detection algorithm based on non-parametric regression[J]. China Journal of Highway and Transport, 2003, 16(1): 82-86. (in Chinese).
    [5] 高慧, 赵建玉, 贾磊. 短时交通流预测方法综述[J]. 济南大学学报: 自然科学版, 2008, 22(1): 88-94. doi: 10.3969/j.issn.1671-3559.2008.01.024

    GAO Hui, ZHAO Jian-yu, JIA Lei. Summary of short-time traffic flow forecasting methods[J]. Journal of University of Jinan: Science and Technology, 2008, 22(1): 88-94. (in Chinese). doi: 10.3969/j.issn.1671-3559.2008.01.024
    [6] 赵建玉, 贾磊, 杨立才, 等. 基于粒子群优化的RBF神经网络交通流预测[J]. 公路交通科技, 2006, 23(7): 116-119. doi: 10.3969/j.issn.1002-0268.2006.07.028

    ZHAO Jian-yu, JIA Lei, YANG Li-cai, et al. RBF neural network traffic flow forecasting model based on particle swarm optimization[J]. Journal of Highway and Transportation Research and Development, 2006, 23(7): 116-119. (in Chinese). doi: 10.3969/j.issn.1002-0268.2006.07.028
    [7] 况爱武, 黄中祥. 基于RBF神经网络的短时交通流预测[J]. 系统工程, 2004, 22(2): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200402012.htm

    KUANG Ai-wu, HUANG Zhong-xiang. Short-term traffic flow prediction based on RBF neural network[J]. Systems Engineering, 2004, 22(2): 63-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200402012.htm
    [8] MAI T, GHOSH B, WILSON S. Multivariate short-term traffic flow forecasting using Bayesian vector autoregressive moving average model[C]∥TRB. Transportation Research Board91 st Annual Meeting. Washington DC: TRB, 2012: 3728-3740.
    [9] CASTRO-NETO M, JEONG Y S, JEONG M K, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2009, 36(3): 6164-6173. doi: 10.1016/j.eswa.2008.07.069
    [10] ZHANG Yang, LIU Yun-cai. Application of combined fore-casting models to intelligent transportation systems[J]. Studies in Computational Intelligence, 2009, 214(10): 181-186. doi: 10.1007/978-3-540-92814-0_28
    [11] 李元诚, 李波, 方廷健. 基于小波支持向量机的非线性组合预测方法研究[J]. 信息与控制, 2004, 33(3): 303-306, 324. doi: 10.3969/j.issn.1002-0411.2004.03.011

    LI Yuan-cheng, LI Bo, FANG Ting-jian. Nonlinear combin-ation forecasting method based on wavelet support vector machines[J]. Information and Control, 2004, 33(3): 303-306, 324. (in Chinese). doi: 10.3969/j.issn.1002-0411.2004.03.011
    [12] 谭满春, 冯荦斌, 徐建闽. 基于ARIMA与人工神经网络组合模型的交通流预测[J]. 中国公路学报, 2007, 20(4): 118-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200704022.htm

    TAN Man-chun, FENG Luo-bin, XU Jian-min. Traffic flow prediction based on hybrid ARIMA and ANN model[J]. China Journal of Highway and Transport, 2007, 20(4): 118-121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200704022.htm
    [13] DAVIS G A, NIHAN N L. Nonparametric regression and short-term freeway traffic forecasting[J]. Journal of Trans-portation Engineering, 1991, 117(2): 178-188. doi: 10.1061/(ASCE)0733-947X(1991)117:2(178)
    [14] SMITH B L, WILLIAMS B M, OSWALD R K. Comparison of parametric and nonparametric models for traffic flow fore-casting[J]. Transportation Research Part C: Emerging Tech-nologies, 2002, 10(4): 303-321. doi: 10.1016/S0968-090X(02)00009-8
    [15] 甘健胜, 陈国龙. 线性组合预测模型及其应用[J]. 计算机科学, 2006, 33(9): 191-194. doi: 10.3969/j.issn.1002-137X.2006.09.058

    GAN Jian-sheng, CHEN Guo-long. Linear combination fore-casting model and its application[J]. Computer Science, 2006, 33(9): 191-194. (in Chinese). doi: 10.3969/j.issn.1002-137X.2006.09.058
    [16] 饶从军, 王成, 涂火年. 一种新的预测模型及其应用[J]. 武汉理工大学学报: 交通科学与工程版, 2007, 31(6): 1098-1101. doi: 10.3963/j.issn.2095-3844.2007.06.041

    RAO Cong-jun, WANG Cheng, TU Huo-nian. Novel fore-casting model and its application[J]. Journal of Wuhan University of Technology: Transportation Science and Engin-eering, 2007, 31(6): 1098-1101. (in Chinese). doi: 10.3963/j.issn.2095-3844.2007.06.041
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  1136
  • HTML全文浏览量:  167
  • PDF下载量:  1081
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-07
  • 刊出日期:  2012-08-25

目录

    /

    返回文章
    返回