Fluctuating wind field and wind-induced vibration response of catenary based on AR model
-
摘要: 基于AR模型和接触网结构特性, 建立了具有时间和空间相关的接触网脉动风场, 由模拟的风速时程获得作用于接触网的风荷载; 建立接触网三维有限元模型, 研究了其模态、静态风偏和风振响应, 并对位移响应进行了频谱分析。分析结果表明: 垂向风速相对顺风向风速较小, 采用Davenport风速谱可建立接触网脉动风场; 接触网在30m·s-1的横向平均风和自然风作用时, 接触线跨中节点横向位移的最大值分别为109.11mm和312.49mm, 平均风荷载下计算得到的接触线横向位移减小了186.40%;接触网在横向自然风作用时, 接触线横向和垂向振动位移同时产生, 接触网第1阶垂向和横向振动频率分别为0.973Hz和1.384Hz, 在这2阶频率处产生了接触网结构与风荷载的峰值共振; 接触网在30m·s-1的自然风作用时, 由风荷载引起的应力分别占接触线和承力索总应力的10.77%和27.40%, 因此, 需采用脉动风荷载进行接触网的风偏和强度设计。Abstract: Based on AR model and the structural characteristics of catenary, the fluctuating wind field of catenary related with time and space was established.The fluctuating wind loads acting on the catenary were calculated by the simulated wind speed time series.A three-dimensional finite element model of catenary was established to calculate the modes, static wind deviations and wind-induced vibration responses of catenary, and the spectrums of the displacement responses were analyzed in details.Analysis result indicates that the fluctuating wind field of catenary can be established by using Davenport wind speed spectrum because the vertical wind speed is lower than the along-wind speed.While the lateral average wind and natural wind with the speed of 30m·s-1 acting on the catenary, the maximum lateral displacements of mid-span node of contact wire are 109.11mm and 312.49mm, respectively.The lateral displacement of catenary calculated by the average wind load acting on the catenary decreases by 186.40% compared with the value calculated by the fluctuating wind loads.The lateral displacement of catenary is generated as well as the vertical displacement of catenary under natural wind, the first order vertical and lateral frequencies are 0.973 Hz and 1.384 Hz, respectively, and the windinduced responses of catenary exhibit peak resonant vibration in the zone of the two frequencies.Under natural wind with a speed of 30m·s-1, the stresses of contact wire and support wire caused by the wind loads are about 10.77% and 27.40% of their total stresses, respectively.Therefore, the fluctuating wind loads should be applied to conduct the wind deviation and strength design of catenary.
-
Key words:
- catenary /
- AR model /
- fluctuating wind field /
- wind-induced vibration response /
- spectrum analysis
-
表 1 风速计算参数
Table 1. Calculation parameters of wind speed
表 2 接触网材料参数
Table 2. Material parameters of catenary
表 3 接触网结构参数
Table 3. Structure parameters of catenary
-
[1] TB 10009—2005, 铁路电力牵引供电设计规范[S].TB 10009—2005, design code of railway electric traction feeding[S]. (in Chinese). [2] GB 50009—2001, 建筑结构荷载规范[S].GB 50009—2001, load code for the design of building structures[S]. (in Chinese). [3] 李瑞平, 周宁, 梅桂明, 等. 初始平衡状态的接触网有限元模型[J]. 西南交通大学学报, 2009, 44 (5): 732-737. doi: 10.3969/j.issn.0258-2724.2009.05.019LI Rui-ping, ZHOU Ning, MEI Gui-ming, et al. Finite element model for catenary in initial equilibrium state[J]. Journal of Southwest Jiaotong University, 2009, 44 (5): 732-737. (in Chinese). doi: 10.3969/j.issn.0258-2724.2009.05.019 [4] POMBO J, AMBRÓSIO J, PEREIRA M, et al. Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains[J]. Vehicle System Dynamics, 2009, 47 (11): 1327-1347. doi: 10.1080/00423110802613402 [5] SCANLON T J, STICKLAND M T, OLDROYD A B. An investigation into the attenuation of wind speed by the use of windbreaks in the vicinity of overhead wires[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2000, 214 (3): 173-182. doi: 10.1243/0954409001531298 [6] STICKLAND M T, SCANLON T J. An investigation into the aerodynamic characteristics of catenary contact wires in a cross-wind[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2001, 215 (4): 311-318. doi: 10.1243/0954409011531602 [7] STICKLAND M T, SCANLON T J, CRAIGHEAD I A, et al. An investigation into the mechanical damping characteristics of catenary contact wires and their effect on aerodynamic galloping instability[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2003, 217 (2): 63-71. doi: 10.1243/095440903765762814 [8] 曹树森, 柯坚, 邓斌, 等. 强风地区接触网动力稳定性分析[J]. 中国铁道科学, 2010, 31 (4): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201004018.htmCAO Shu-sen, KE Jian, DENG Bin, et al. The dynamic stability analysis of the catenary systems in strong wind area[J]. China Railway Science, 2010, 31 (4): 79-84. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201004018.htm [9] 赵飞, 刘志刚, 韩志伟. 随机风场对弓网系统动态性能影响研究[J]. 铁道学报, 2012, 34 (10): 36-42. doi: 10.3969/j.issn.1001-8360.2012.10.006ZHAO Fei, LIU Zhi-gang, HAN Zhi-wei. Simulation study on influence of stochastic wind field to dynamic behavior of pantograph-catenary system[J]. Journal of the China Railway Society, 2012, 34 (10): 36-42. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.10.006 [10] 张希黔, 葛勇, 严春风, 等. 脉动风场模拟技术的研究与进展[J]. 地震工程与工程振动, 2008, 28 (6): 206-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200806029.htmZHANG Xi-qian, GE Yong, YAN Chun-feng, et al. Advances in research of simulation technology of fluctuation wind loading[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28 (6): 206-212. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200806029.htm [11] 王之宏. 风荷载的模拟研究[J]. 建筑结构学报, 1994, 15 (1): 44-52. doi: 10.3321/j.issn:1000-6869.1994.01.001WANG Zhi-hong. Simulation of wind loading[J]. Journal of Building Structures, 1994, 15 (1): 44-52. (in Chinese). doi: 10.3321/j.issn:1000-6869.1994.01.001 [12] 胡雪莲, 李正良, 晏致涛. 大跨度桥梁结构风荷载模拟研究[J]. 重庆建筑大学学报, 2005, 27 (3): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200503013.htmHU Xue-lian, LI Zheng-liang YAN Zhi-tao. Simulation of wind loading for large-span bridge structures[J]. Journal of Chongqing Jianzhu University, 2005, 27 (3): 63-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200503013.htm [13] 舒新玲, 周岱. 风速时程AR模型及其快速实现[J]. 空间结构, 2003, 9 (4): 27-32, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJG200304006.htmSHU Xin-ling, ZHOU Dai. AR model of wind speed time series and its rapid implementation[J]. Spatial Structures, 2003, 9 (4): 27-32, 46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJJG200304006.htm [14] 周宁, 张卫华. 基于直接积分法的弓网耦合系统动态性能仿真分析[J]. 中国铁道科学, 2008, 29 (6): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200806013.htmZHOU Ning, ZHANG Wei-hua. Dynamical performance simulation of the pantograph-catenary coupled system based on direct integration method[J]. China Railway Science, 2008, 29 (6): 71-76. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200806013.htm [15] 刘怡, 张卫华, 梅桂明. 受电弓/接触网垂向耦合运动中接触网动应力研究[J]. 铁道学报, 2003, 25 (4): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200304006.htmLIU Yi, ZHANG Wei-hua, MEI Gui-ming. Study of dynamic stress of the catenary in the pantograph/catenary vertical coupling movement[J]. Journal of the China Railway Society, 2003, 25 (4): 23-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200304006.htm