-
摘要: 分析了列车间隔与其跟驰行为的关系, 利用Petri网形式化建模工具描述了当高速列车跟驰稳态被破坏时, 列车间隔的动态控制。面向CTCS-4级列车运行控制系统, 运用数值分析方法建立了全速域范围内最小安全车距随后车当前速度变化的拟合函数, 并运用该拟合函数进行列车跟驰行为质量评估, 进而构建了基于跟驰行为评估的列车间隔动态控制模型, 并对该模型进行了仿真验证。仿真结果表明: 列车跟驰系统从速度为200km·h-1、列车间隔为5 849.18m的安全、高效跟驰稳态运行到速度为380km·h-1的跟驰稳态期间, 列车间隔的动态控制能够通过后车的行为调整得到实现, 且当速度为380km·h-1的跟驰稳态实现时, 列车间隔仅比安全车距大358.00m, 说明新的安全、高效跟驰稳态已经建立; 当前车紧急停车时, 后车在控制律的作用下采取因应措施, 安全、高效、平稳地减速运行, 直至完全停车。仿真结果验证了控制方法的有效性和可行性, 能够实现列车安全、高效跟驰运行。Abstract: The relationship between train interval and its following behavior was analyzed. When the steady-following state of high-speed train was broken, the dynamic control of train interval was described by using the formal modeling tool of Petri nets. For the CTCS-4 level train control system, a fitting function of the minimum safe headway changing with the current velocity of following train within the full-range velocity field was constructed by using numerical analysis method, and the constructed fitting function was used for the behavioral quality evaluation of following train. The dynamic control model of train interval was established based on the evaluation of train following behavior, and the model was simulated and verified. Simulation result indicates that during the period of train following system operating from a safe and efficient steady-following state with a velocity of 200 km·h-1 and a train interval of 5 849.18 mto another steady-following state with a velocity of 380 km·h-1, the dynamic control of train interval is accomplished well by the behavioral adjustment of following train, and the train interval is only 358.00 mlonger than the safe headway when a new steady-following state is realized at the velocity of 380 km·h-1, which means that a new safe and efficient steady-following state is established. When the preceding train stops abruptly in emergency, under the action of control law, the following train takes a corresponding measure to reduce its own velocity for movement in safety, efficiency and smoothness until it stops completely. The simulation results verify the effectiveness and feasibility of control method for safe and efficient train following operation.
-
表 1 紧急制动距离限值和最小安全车距
Table 1. Limits of emergency braking distances and minimum safety headways
-
[1] FU Yin-ping, GAO Zi-you, LI Ke-ping. Modeling study for tracking operation of subway trains based on cellular automata[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8 (4): 89-95. doi: 10.1016/S1570-6672(08)60036-7 [2] 潘登, 郑应平. 铁路移动闭塞系统列车追踪运行的安全间隔[J]. 同济大学学报: 自然科学版, 2008, 36 (9): 1220-1225. doi: 10.3321/j.issn:0253-374X.2008.09.014PAN Deng, ZHENG Ying-ping. Safe following operation distance between two trains under railway moving automatic block system[J]. Journal of Tongji University: Natural Science, 2008, 36 (9): 1220-1225. (in Chinese). doi: 10.3321/j.issn:0253-374X.2008.09.014 [3] 陈荣武, 诸昌钤, 刘莉. CBTC系统列车追踪间隔计算及优化[J]. 西南交通大学学报, 2011, 46 (4): 579-585. doi: 10.3969/j.issn.0258-2724.2011.04.009CHEN Rong-wu, ZHU Chang-qian, LIU Li. Calculation and optimization of train headway in CBTC system[J]. Journal of Southwest Jiaotong University, 2011, 46 (4): 579-585. (in Chinese). doi: 10.3969/j.issn.0258-2724.2011.04.009 [4] 上官伟, 蔡伯根, 王晶晶, 等. 时速250km以上高速列车制动模式曲线算法[J]. 交通运输工程学报, 2011, 11 (3): 41-46, 54. doi: 10.3969/j.issn.1671-1637.2011.03.008SHANGGUAN Wei, CAI Bai-gen, WANG Jing-jing, et al. Braking mode curve arithmetic of high-speed train above250km·h-1[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (3): 41-46, 54. (in Chinese). doi: 10.3969/j.issn.1671-1637.2011.03.008 [5] 路飞, 宋沐民, 李晓磊. 基于移动闭塞原理的地铁列车追踪运行控制研究[J]. 系统仿真学报, 2005, 17 (8): 1944-1947, 1950. doi: 10.3969/j.issn.1004-731X.2005.08.042LU Fei, SONG Mu-min, LI Xiao-lei. Research on subway train following control system under moving block system[J]. Journal of System Simulation, 2005, 17 (8): 1944-1947, 1950. (in Chinese). doi: 10.3969/j.issn.1004-731X.2005.08.042 [6] CHANDLER R E, HERMAN R, MONTROLL E W. Traffic dynamics: studies in car following[J]. Operations Research, 1958, 6 (2): 165-184. doi: 10.1287/opre.6.2.165 [7] KOMETANI E, SASAKI T. Dynamic behaviour of traffic with a non-linear spacing-speed relationship[C]∥Elsevier. Proceedings of the Theory of Traffic Flow. New York: Elsevier, 1959: 105-119. [8] GIPPS P G. A behavioural car-following model for computer simulation[J]. Transportation Research Part B: Methodological, 1981, 15 (2): 105-111. doi: 10.1016/0191-2615(81)90037-0 [9] BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51 (2): 1035-1042. [10] ZHAO Xiao-mei, GAO Zi-you. A new car-following model: full velocity and acceleration difference model[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 2005, 47 (1): 145-150. doi: 10.1140/epjb/e2005-00304-3 [11] PENG Guang-han, CAI Xin-hua, LIU Chang-qing, et al. Optimal velocity difference model for a car-following theory[J]. Physics Letter A, 2011, 375 (45): 3973-3977. doi: 10.1016/j.physleta.2011.09.037 [12] 谢肇桐. 移动闭塞系统[J]. 铁道通信信号, 1996, 32 (2): 35-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH200601001.htmXIE Zhao-tong. Moving block system[J]. Railway Signalling and Communication, 1996, 32 (2): 35-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH200601001.htm [13] ZIMMERMANN A, HOMMEL G. A train control system case study in model-based real time system design[C]∥IEEE. Proceedings of the 17th International Symposium on Parallel and Distributed Processing. Nice: IEEE, 2003: 118-130. [14] 张建柏, 彭辉水, 倪大成, 等. 高速列车制动技术综述[J]. 机车电传动, 2011 (4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201104000.htmZHANG Jian-bai, PENG Hui-shui, NI Da-cheng, et al. Overviewing braking technology of the high-speed trains[J]. Electric Drive for Locomotives, 2011 (4): 1-4. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201104000.htm [15] 黄问盈, 杨宁清, 黄民. 我国铁道列车紧急制动距离限值标准的探讨[J]. 中国铁道科学, 2003, 24 (5): 84-90. doi: 10.3321/j.issn:1001-4632.2003.05.017HUANG Wen-ying, YANG Ning-qing, HUANG Min. Standard of railway train emergency braking distance limit in China[J]. China Railway Science, 2003, 24 (5): 84-90. (in Chinese). doi: 10.3321/j.issn:1001-4632.2003.05.017 [16] 黄问盈, 张中央. 铁道列车制动限速[J]. 中国铁道科学, 2007, 28 (6): 91-95. doi: 10.3321/j.issn:1001-4632.2007.06.017HUANG Wen-ying, ZHANG Zhong-yang. Speed limits of railway train braking[J]. China Railway Science, 2007, 28 (6): 91-95. (in Chinese). doi: 10.3321/j.issn:1001-4632.2007.06.017 [17] MARTINEZ J J, CANUDAS-DE-WIT C. A safe longitudinal control for adaptive cruise control and stop-and-go scenarios[J]. IEEE Transactions on Control Systems Technology, 2007, 15 (2): 246-258. doi: 10.1109/TCST.2006.886432