留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于国内外试验方法的橡胶沥青性能测试

李晓燕 平路 汪海年 张琛 尤占平

李晓燕, 平路, 汪海年, 张琛, 尤占平. 基于国内外试验方法的橡胶沥青性能测试[J]. 交通运输工程学报, 2015, 15(1): 10-17. doi: 10.19818/j.cnki.1671-1637.2015.01.002
引用本文: 李晓燕, 平路, 汪海年, 张琛, 尤占平. 基于国内外试验方法的橡胶沥青性能测试[J]. 交通运输工程学报, 2015, 15(1): 10-17. doi: 10.19818/j.cnki.1671-1637.2015.01.002
LI Xiao-yan, PING Lu, WANG Hai-nian, ZHANG Chen, YOU Zhan-ping. Performance test of rubber asphalt based on domestic and abroad test methods[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 10-17. doi: 10.19818/j.cnki.1671-1637.2015.01.002
Citation: LI Xiao-yan, PING Lu, WANG Hai-nian, ZHANG Chen, YOU Zhan-ping. Performance test of rubber asphalt based on domestic and abroad test methods[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 10-17. doi: 10.19818/j.cnki.1671-1637.2015.01.002

基于国内外试验方法的橡胶沥青性能测试

doi: 10.19818/j.cnki.1671-1637.2015.01.002
基金项目: 

国家自然科学基金项目 51378074

交通运输部应用基础研究项目 2014 319 812 180

详细信息
    作者简介:

    李晓燕(1977-), 女, 山西运城人, 西北工业大学讲师, 长安大学工学博士研究生, 从事路面材料性能及交通工程研究

    尤占平(1971-), 男, 陕西商洛人, 密歇根理工大学教授, 工学博士

  • 中图分类号: U414.75

Performance test of rubber asphalt based on domestic and abroad test methods

More Information
    Author Bio:

    LI Xiao-yan (1977-), female, lecturer, doctoral student, +86-29-82334798, lixiaoyan309@163.com

    YOU Zhan-ping (1971-), male, professor, PhD, +86-29-82334798, zyou@mtu.edu

  • 摘要: 为统一橡胶沥青性能试验的评价指标, 分别采用不同胶粉掺量对70#和90#的基质沥青进行改性, 基于中国规范中的针入度、延度、软化点和弹性恢复试验以及Superpave中的动态剪切流变试验、布氏旋转粘度试验和弯曲梁流变试验等对橡胶沥青进行了性能评价。研究结果表明: 胶粉的添加能显著改善沥青的高温性能, 显著降低沥青的温度敏感性, 但增大了沥青的高温粘度, 增加了沥青混合料的拌和与压实难度; 胶粉的溶胀作用会导致针入度的试验结果出现较大误差, 因此, 不建议采用针入度试验来评价橡胶沥青的性能; 软化点可作为橡胶沥青高温性能的一个评价指标, 对于90#基质沥青, 胶粉掺量分别为10%、15%、20%和25%时的软化点比未掺胶粉时的软化点分别提高了11.23、11.97、15.18、21.10 ℃, 对于70#基质沥青, 胶粉的添加则使其软化点分别提高了4.02、8.18、12.83、14.45 ℃, 因此, 胶粉对70#基质沥青软化点的影响效果要大于对90#基质沥青的影响效果; 胶粉对沥青低温性能的改善效果会随着温度的下降而降低, 在研究胶粉对沥青低温性能的影响程度时, 弯曲梁流变试验的结果比低温延度试验的结果更加明显, 且由于橡胶沥青的低温延度较小, 试验过程中容易产生较大误差, 因此, 建议采用弯曲梁流变试验评价橡胶沥青的低温性能。

     

  • 图  1  橡胶沥青性能试验方案

    Figure  1.  Performance experimental program of rubber asphalt

    图  2  基质沥青和橡胶沥青的针入度试验结果

    Figure  2.  Penetration test results of base asphalt and rubber asphalt

    图  3  基质沥青和橡胶沥青软化点

    Figure  3.  Softening points of base asphalt and rubber asphalt

    图  4  橡胶沥青的延度和弹性恢复结果

    Figure  4.  Ductility and elastic recovery results of rubber asphalt

    图  5  不同温度下基质沥青和橡胶沥青抗车辙因子

    Figure  5.  Rutting resistance factors of base asphalt andrubber asphalt at different temperatures

    图  6  基质沥青与橡胶沥青旋转粘度

    Figure  6.  Rotary viscosities of base asphalt and rubber asphalt

    图  7  沥青的蠕变劲度

    Figure  7.  Creep stiffness of asphalt

    表  1  壳牌90# 和70# 沥青基本性能

    Table  1.   Fundamental properties of Shell 90# and 70# asphalts

    表  2  胶粉的技术指标

    Table  2.   Technical indicators of rubber powder

    表  3  橡胶沥青针入度方差分析结果

    Table  3.   Variance analysis result of rubber asphalt penetration

    表  4  橡胶沥青软化点方差分析结果

    Table  4.   Variance analysis result of rubberasphalt softening point

    表  5  橡胶沥青延度和弹性恢复方差分析结果

    Table  5.   Variance analysis results of ductility andelastic recovery for rubber asphalt

    表  6  不同胶粉掺量下沥青抗车辙因子的差异性分析结果

    Table  6.   Difference analysis results of rutting resistance factorsat different rubber powder contents

    表  7  橡胶沥青粘度-温度曲线拟合结果

    Table  7.   Fitting result of rubber asphalt viscosity-temperature curve

    表  8  S(t)方差分析结果

    Table  8.   Variance analysis result of S(t)

  • [1] BRESSETTE T, ZHOU H P, STONEX A, et al. Asphalt rubber and its potential use in China[C]∥ICCTP. Seventh International Conference of Chinese Transportation Professionals. Shanghai: ICCTP, 2007: 776-785.
    [2] 胡彪, 张晓雨, 赵新, 等. 废旧橡胶制品资源化利用研究进展[J]. 材料导报, 2014, 28(2): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201403016.htm

    HU Biao, ZHANG Xiao-yu, ZHAO Xin, et al. Research progress on resource utilization of waste rubber products[J]. Materials Review, 2014, 28(2): 75-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201403016.htm
    [3] HE Z Y, LU Z F, ZHANG W W. Performance study on rubber powder modified asphalt of waste tire[C]∥ICCTP. Tenth International Conference of Chinese Transportation Professionals. Beijing: ICCTP, 2010: 3272-3278.
    [4] 何立平, 申爱琴, 谢成, 等. 橡胶沥青结合料性能正交试验[J]. 长安大学学报: 自然科学版, 2014, 34(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201401003.htm

    HE Li-ping, SHEN Ai-qin, XIE Cheng, et al. Orthogonal test for rubber asphalt properties[J]. Journal of Chang'an University: Natural Science Edition, 2014, 34(1): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201401003.htm
    [5] ZHOU H P, HOLIKATTI S, VACURA P. Caltrans use of scrap tires in asphalt rubber products: a comprehensive review[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(1): 39-48. doi: 10.1016/S2095-7564(15)30087-8
    [6] NAVARRO F J, PARTAL P, MARTINEZ-BOZA F, et al. Influence of crumb rubber concentration on the rheological behavior of a crumb rubber modified bitumen[J]. Energy and Fuels, 2005, 19(5): 1984-1990. doi: 10.1021/ef049699a
    [7] MAMLOUK M, MOBASHER B. Cracking resistance of asphalt rubber mix versus hot-mix asphalt[J]. Road Materials and Pavement Design, 2004, 5(4): 435-451. doi: 10.1080/14680629.2004.9689980
    [8] MULL M A, STUART K, YEHIA A. Fracture resistance characterization of chemically modified crumb rubber asphalt pavement[J]. Journal of Materials Science, 2002, 37(3): 557-566. doi: 10.1023/A:1013721708572
    [9] KIM S, LOH S W, ZHAI H, et al. Advanced characterization of crumb rubber-modified asphalts, using protocols developed for complex binders[J]. Transportation Research Record, 2001(1767): 15-24. https://trid.trb.org/view/695988
    [10] SPECHT L P, KHATCHATOURIAN O, BRITO L A T, et al. Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks[J]. Materials Research, 2007, 10(1): 69-74. doi: 10.1590/S1516-14392007000100015
    [11] JEONG K D, LEE S J, AMIRKHANIAN S N, et al. Interaction effects of crumb rubber modified asphalt binders[J]. Construction and Building Materials, 2010, 24(5): 824-831. doi: 10.1016/j.conbuildmat.2009.10.024
    [12] 徐东, 王新宽, 陈博. 橡胶沥青混合料老化再生及其路用性能研究[J]. 武汉理工大学学报, 2012, 34(10): 48-52. doi: 10.3963/j.issn.1671-4431.2012.10.011

    XU Dong, WANG Xin-kuan, CHEN Bo. Research on properties of reclaimed rubber modified asphalt mixture[J]. Journal of Wuhan University of Technology, 2012, 34(10): 48-52. (in Chinese) doi: 10.3963/j.issn.1671-4431.2012.10.011
    [13] 关永胜, 谈至明, 张志祥. 间断级配橡胶沥青混合料抗车辙性能[J]. 同济大学学报: 自然科学版, 2013, 41(5): 705-709. doi: 10.3969/j.issn.0253-374x.2013.05.012

    GUAN Yong-sheng, TAN Zhi-ming, ZHANG Zhi-xiang. Rutting performance of gap graded asphalt rubber mixtures[J]. Journal of Tongji University: Natural Science, 2013, 41(5): 705-709. (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.05.012
    [14] 杨永顺, 曹卫东, 李英勇, 等. 橡胶沥青制备工艺及其性能的研究[J]. 山东大学学报: 工学版, 2008, 38(5): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY200805004.htm

    YANG Yong-shun, CAO Wei-dong, LI Ying-yong, et al. Preparation process and performance of asphalt-rubber[J]. Journal of Shandong University: Engineering Science, 2008, 38(5): 10-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY200805004.htm
    [15] 黄卫东, 王伟, 黄岩, 等. 橡胶沥青混合料高温稳定性影响因素试验[J]. 同济大学学报: 自然科学版, 2010, 38(7): 1023-1028. doi: 10.3969/j.issn.0253-374x.2010.07.015

    HUANG Wei-dong, WANG Wei, HUANG Yan, et al. Influencing factor research on high-temperature performance of asphalt rubber mixture[J]. Journal of Tongji University: Natural Science, 2010, 38(7): 1023-1028. (in Chinese) doi: 10.3969/j.issn.0253-374x.2010.07.015
    [16] 于新, 孙文浩, 罗怡琳, 等. 橡胶沥青温度敏感性评价方法研究[J]. 建筑材料学报, 2013, 16(2): 266-270, 283. doi: 10.3969/j.issn.1007-9629.2013.02.015

    YU Xin, SUN Wen-hao, LUO Yi-lin, et al. Research on the evaluation index of temperature sensitivity of CRMA[J]. Journal of Building Materials, 2013, 16(2): 266-270, 283. (in Chinese) doi: 10.3969/j.issn.1007-9629.2013.02.015
    [17] 凌天清, 李耀楠, 董强, 等. 橡胶颗粒对微表处性能的影响及其降噪效果[J]. 交通运输工程学报, 2011, 11(5): 1-5. http://transport.chd.edu.cn/article/id/201105001

    LING Tian-qing, LI Yao-nan, DONG Qiang, et al. Influence of rubber particles on micro-surfacing performance and its noise-reduction effect[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 1-5. (in Chinese) http://transport.chd.edu.cn/article/id/201105001
    [18] XIAO F P, AMIRKHANIAN S N. Laboratory investigation of utilizing high percentage of rap in rubberized asphalt mixture[J]. Materials and Structures, 2010, 43(1/2): 223-233. doi: 10.1617/s11527-009-9483-1
    [19] AKISETTY C K, LEE S J, AMIRKHANIAN S N. High temperature properties of rubberized binders containing warm asphalt additives[J]. Construction and Building Materials, 2009, 23(1): 565-573. doi: 10.1016/j.conbuildmat.2007.10.010
    [20] THODESEN C C. Development of prediction models of high temperature crumb rubber modified binders[D]. Clemson: Clemson University, 2008.
    [21] WANG Hai-nian, YOU Zhan-ping, MILLS-BEALE J M, et al. Laboratory evaluation on high temperature viscosity and low temperature stiffness of asphalt binder with high percent scrap tire rubber[J]. Construction and Building Materials, 2012, 26(1): 583-590. doi: 10.1016/j.conbuildmat.2011.06.061
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  972
  • HTML全文浏览量:  252
  • PDF下载量:  904
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-23
  • 刊出日期:  2015-02-25

目录

    /

    返回文章
    返回