留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图像色相值突变特征的钢轨区域快速识别方法

闵永智 殷超 党建武 程天栋

闵永智, 殷超, 党建武, 程天栋. 基于图像色相值突变特征的钢轨区域快速识别方法[J]. 交通运输工程学报, 2016, 16(1): 46-54. doi: 10.19818/j.cnki.1671-1637.2016.01.006
引用本文: 闵永智, 殷超, 党建武, 程天栋. 基于图像色相值突变特征的钢轨区域快速识别方法[J]. 交通运输工程学报, 2016, 16(1): 46-54. doi: 10.19818/j.cnki.1671-1637.2016.01.006
MIN Yong-zhi, YIN Chao, DANG Jian-wu, CHENG Tian-dong. Fast recognition method of rail region based on hue value mutation feature of image[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 46-54. doi: 10.19818/j.cnki.1671-1637.2016.01.006
Citation: MIN Yong-zhi, YIN Chao, DANG Jian-wu, CHENG Tian-dong. Fast recognition method of rail region based on hue value mutation feature of image[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 46-54. doi: 10.19818/j.cnki.1671-1637.2016.01.006

基于图像色相值突变特征的钢轨区域快速识别方法

doi: 10.19818/j.cnki.1671-1637.2016.01.006
基金项目: 

国家自然科学基金项目 61461023

甘肃省自然科学基金项目 1308RJZA172

详细信息
    作者简介:

    闵永智(1975-), 男, 陕西城固人, 兰州交通大学副教授, 工学博士, 从事智能测试与机器视觉研究

  • 中图分类号: U216

Fast recognition method of rail region based on hue value mutation feature of image

More Information
  • 摘要: 应用彩色图像中不同区域HSL色彩空间中色相值突变特征提取轨检图像中钢轨边界点, 对多条不同等分线处钢轨边界点进行直线拟合以确定钢轨边缘, 识别目标钢轨区域。分析了机器视觉轨检系统序列图像中轨枕、砟石、扣件与钢轨的分布特征及不同特征区域图像色相值的突变特征, 研究了轨检图像不同等分数值下等分线处色相值突变点与钢轨边界点的对应关系, 讨论了不同等分值对识别时间与识别失败率的影响。在不同光照条件下对识别方法与传统方法进行了对比分析。分析结果表明: 当等分值为8时识别效果最优, 识别失败率为5.0%, 识别时间为4.65 ms; 在500~1 000、1 000~10 000、10 000~100 000 lx三个特征光照强度区间, 识别方法在木枕与混凝土枕轨道中钢轨区域的平均最大识别时间分别为4.57、4.48 ms, 比传统方法分别减少了44.4%、47.1%, 识别时间标准差分别为0.15、0.12 ms, 比传统方法分别降低了91.8%、93.6%, 平均最大识别失败率分别为3.5%、3.3%, 比传统方法分别降低了66.0%、76.9%, 识别失败率标准差均为1.6%, 比传统方法分别降低了68.9%、71.1%。可见, 本文方法是一种机器视觉轨检系统中目标钢轨区域识别的有效方法。

     

  • 图  1  机器视觉轨道检测系统原理

    Figure  1.  Principal of track inspection system using machine vision

    图  2  木枕轨道中钢轨区域H曲线

    Figure  2.  H curves of rail region of wood sleeper track

    图  3  混凝土枕轨道中钢轨区域H曲线

    Figure  3.  H curves of rail region of concrete sleeper track

    图  4  轨检图像坐标系

    Figure  4.  Coordinate system of track inspection image

    图  5  转弯区段图像中钢轨表面宽度

    Figure  5.  Rail surface width in image of turning section

    图  6  钢轨表面区域识别结果

    Figure  6.  Recognition results of surface regions of rails

    图  7  试验装置

    Figure  7.  Experimental device

    图  8  不同n值的识别结果

    Figure  8.  Recognition results of different n values

    图  9  识别时间对比

    Figure  9.  Comparison of recognition times

    图  10  识别失败率对比

    Figure  10.  Comparison of recognition failure rates

  • [1] LI Ying, OTTO C, HAAS N, et al. Component-based track inspection using machine-vision technology[C]∥ACM. Proceedings of the 1 st ACM International Conference on Multimedia Retrieval. New York: ACM, 2011: 1-8.
    [2] 李奕璠, 刘建新, 林建辉, 等. 基于自适应多尺度形态学分析的车轮扁疤故障诊断方法[J]. 交通运输工程学报, 2015, 15(1): 58-65. doi: 10.3969/j.issn.1671-1637.2015.01.008

    LI Yi-fan, LIU Jian-xin, LIN Jian-hui, et al. Fault diagnosis method of railway vehicle with wheel flat based on selfadaptive multi-scale morphology analysis[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 58-65. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.01.008
    [3] DEUTSCHL E, GASSER C, NIEL A, et al. Defect detection on rail surfaces by a vision based system[C]∥IEEE. Proceeings of 2004IEEE Intelligent Vehicles Symposium. New York: IEEE, 2004: 507-511.
    [4] SINGH M, SINGH S, JAISWAL J, et al. Autonomous rail track inspection using vision based system[C]∥IEEE. Proceedings of the 2006IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety. New York: IEEE, 2006: 56-59.
    [5] 占栋, 于龙, 肖建, 等. 基于激光摄像技术的钢轨磨耗截面积测量方法研究[J]. 铁道学报, 2014, 36(4): 32-37. doi: 10.3969/j.issn.1001-8360.2014.04.006

    ZHAN Dong, YU Long, XIAO Jian, et al. Study on track wear cross-section measurement utilizing laser-photogrammetric technique[J]. Journal of the China Railway Society, 2014, 36(4): 32-37. (in Chinese). doi: 10.3969/j.issn.1001-8360.2014.04.006
    [6] 化春键, 邓朝省, 陈莹. 基于双掩模图像差影的工业产品表面缺陷检测[J]. 传感器与微系统, 2015, 34(5): 127-129, 133. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201505037.htm

    HUA Chun-jian, DENG Chao-sheng, CHEN Ying. Industrial products surface defects detection based on image subtraction with double masks[J]. Transducer and Microsystem Technologies, 2015, 34(5): 127-129, 133. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201505037.htm
    [7] 陈旭文, 刘桂雄, 黄坚. FPC的图像采集与表面曲向消除方法[J]. 电子测量与仪器学报, 2015, 29(6): 895-900. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201506020.htm

    CHEN Xu-wen, LIU Gui-xiong, HUANG Jian. Method of image acquisition and curved surface eliminating for flexible printed circuit[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(6): 895-900. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201506020.htm
    [8] TRINH H, HAAS N, LI Ying, et al. Enhanced rail component detection and consolidation for rail track inspection[C]∥IEEE. IEEE Workshop on Applications of Computer Vision. New York: IEEE, 2012: 289-295.
    [9] BABENKO P. Visual inspection of railroad tracks[J]. Dissertationsand Theses-Gradworks, 2009, 3(4): 14-16. https://www.crcv.ucf.edu/papers/theses/Babenko_Pavel.pdf
    [10] LI Qing-yong, REN Sheng-wei. A visual detection system for rail surface defects[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 1531-1542. doi: 10.1109/TSMCC.2012.2198814
    [11] 李清勇, 梁正平, 黄雅平, 等. 缺陷检测的稀疏表示模型及应用[J]. 计算机研究与发展, 2014, 51(9): 1929-1935. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201409006.htm

    LI Qing-yong, LIANG Zheng-ping, HUANG Ya-ping, et al. Sparseness representation model for defect detection and its application[J]. Journal of Computer Research and Development, 2014, 51(9): 1929-1935. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201409006.htm
    [12] 郭保青, 朱力强, 史红梅, 等. 基于单幅图像的轨检车位置校正方法研究[J]. 铁道学报, 2011, 33(12): 72-77. doi: 10.3969/j.issn.1001-8360.2011.12.012

    GUO Bao-qing, ZHU Li-qiang, SHI Hong-mei, et al. Research on track inspection car position correction method by use of single image[J]. Journal of the China Railway Society, 2011, 33(12): 72-77. (in Chinese). doi: 10.3969/j.issn.1001-8360.2011.12.012
    [13] JESUSSEK M, ELLERMANN K. Fault detection and isolation for a railway vehicle by evaluating estimation residuals[J]. Procedia IUTAM, 2015, 13(1): 14-23. https://www.sciencedirect.com/science/article/pii/S221098381500005X
    [14] 唐湘娜, 王耀南. 铁轨表面缺陷的视觉检测与识别算法[J]. 计算机工程, 2013, 39(3): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201303008.htm

    TANG Xiang-na, WANG Yao-nan. Visual inspection and classification algorithm of rail surface defect[J]. Computer Engineering, 2013, 39(3): 25-30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201303008.htm
    [15] 刘晓瑞, 谢雄耀. 基于图像处理的隧道表面裂缝快速检测技术研究[J]. 地下空间与工程学报, 2009, 31(增2): 1624-1628. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2009S2044.htm

    LIU Xiao-rui, XIE Xiong-yao. Rapid crack inspection of tunnel surface based on image processing[J]. Chinese Journal of Underground Space and Engineering, 2009, 31(S2): 1624-1628. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2009S2044.htm
    [16] 吴禄慎, 李彧雯, 陈华伟, 等. 基于图像区域划分的轨道缺陷自动检测技术研究[J]. 激光与红外, 2012, 42(5): 594-599. doi: 10.3969/j.issn.1001-5078.2012.05.025

    WU Lu-shen, LI Yu-wen, CHEN Hua-wei, et al. Research on rail defects automatic detection technology based on image region partition[J]. Laser and Infrared, 2012, 42(5): 594-599. (in Chinese). doi: 10.3969/j.issn.1001-5078.2012.05.025
    [17] 茅正冲, 邬锋. 基于图像传感器的铁轨表面缺陷视觉检测算法[J]. 传感器与微系统, 2015, 34(9): 141-144.

    MAO Zheng-chong, WU Feng. Visual detection algorithm for rail surface defects based on image sensor[J]. Transducer and Microsystem Technologies, 2015, 34(9): 141-144. (in Chinese).
    [18] 周富强, 郭卉. 复杂背景下货车制动梁的快速分割方法[J]. 光学技术, 2013, 39(5): 387-392. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201305002.htm

    ZHOU Fu-qiang, GUO Hui. Fast segmentation method for brake beam of freight train under complex background[J]. Optical Technique, 2013, 39(5): 387-392. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201305002.htm
    [19] EFTEKHARI M, MOALLEM M, SADRI S, et al. A novel indicator of stator winding inter-turn fault in induction motor using infrared thermal imaging[J]. Infrared Physics and Technology, 2013, 61(5): 330-336. https://www.sciencedirect.com/science/article/pii/S1350449513001837
    [20] LI Qing-yong, REN Sheng-wei. A real-time visual inspection system for discrete surface defects of rail heads[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(8): 2189-2199. https://www.docin.com/p-826978307.html
    [21] GIUSEPPE M G D, TROIANO A, TROISE C, et al. k-means clustering as tool for multivariate geophysical data analysis. An application to shallow fault zone imaging[J]. Journal of Applied Geophysics, 2013, 101(1): 108-115.
    [22] VASUKI Y, HOLDEN E J, KOVESI P, et al. Semi-automatic mapping of geological structures using UAV-based photogrammetric data: an image analysis approach[J]. Computers and Geosciences, 2014, 69(4): 22-32.
    [23] 莫思特, 刘天琪, 李碧雄. 基于HSL颜色空间的自动白平衡算法[J]. 四川大学学报: 工程科学版, 2013, 45(增1): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2013S1019.htm

    MO Si-te, LIU Tian-qi, LI Bi-xiong. Research of automatic white balance algorithm based on HSL color space[J]. Journal of Sichuan University: Engineering Science Edition, 2013, 45(S1): 95-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2013S1019.htm
    [24] LIANG Zhen, XU Bin-gang, CHI Zhe-ru, et al. Intelligent characterization and evaluation of yarn surface appearance using saliency map analysis, wavelet transform and fuzzy ARTMAP neural network[J]. Expert Systems with Applications, 2012, 39(4): 4201-4212. https://www.sciencedirect.com/science/article/pii/S0957417411014370
    [25] 刘奋飞, 赵辉, 陶卫. 改进的直线拟合线阵CCD图像边缘检测方法[J]. 光电工程, 2005, 32(3): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC20050300A.htm

    LIU Fen-fei, ZHAO Hui, TAO Wei. Improved edge detection method for the linear CCD image on linear fitting[J]. OptoElectronic Engineering, 2005, 32(3): 40-43. (in Chinese. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC20050300A.htm
  • 加载中
图(10)
计量
  • 文章访问数:  762
  • HTML全文浏览量:  165
  • PDF下载量:  636
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-25
  • 刊出日期:  2016-02-25

目录

    /

    返回文章
    返回