留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

承台大体积混凝土里表温差梯度与温差应力有限元模拟

孙增智 田俊壮 石强 刘伟 陈华鑫 徐勤武 张奔

孙增智, 田俊壮, 石强, 刘伟, 陈华鑫, 徐勤武, 张奔. 承台大体积混凝土里表温差梯度与温差应力有限元模拟[J]. 交通运输工程学报, 2016, 16(2): 18-26. doi: 10.19818/j.cnki.1671-1637.2016.02.003
引用本文: 孙增智, 田俊壮, 石强, 刘伟, 陈华鑫, 徐勤武, 张奔. 承台大体积混凝土里表温差梯度与温差应力有限元模拟[J]. 交通运输工程学报, 2016, 16(2): 18-26. doi: 10.19818/j.cnki.1671-1637.2016.02.003
SUN Zeng-zhi, TIAN Jun-zhuang, SHI Qiang, LIU Wei, CHEN Hua-xin, XU Qin-wu, ZHANG Ben. Finite element simulation of inside-outside temperature gradient and thermal stress for abutment mass concrete[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 18-26. doi: 10.19818/j.cnki.1671-1637.2016.02.003
Citation: SUN Zeng-zhi, TIAN Jun-zhuang, SHI Qiang, LIU Wei, CHEN Hua-xin, XU Qin-wu, ZHANG Ben. Finite element simulation of inside-outside temperature gradient and thermal stress for abutment mass concrete[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 18-26. doi: 10.19818/j.cnki.1671-1637.2016.02.003

承台大体积混凝土里表温差梯度与温差应力有限元模拟

doi: 10.19818/j.cnki.1671-1637.2016.02.003
基金项目: 

国家科技支撑计划项目 2011BAE27B04

内蒙古自治区交通科技项目 20130333

详细信息
    作者简介:

    孙增智(1969-), 男, 陕西商洛人, 长安大学高级工程师, 工学博士, 从事道路材料研究

  • 中图分类号: U443.2

Finite element simulation of inside-outside temperature gradient and thermal stress for abutment mass concrete

More Information
    Author Bio:

    SUN Zeng-zhi(1969-), male, senior engineer, PhD, +86-29-82334440, zzsun@chd.edu.cn

  • 摘要: 针对大体积混凝土因水化热引起的早期开裂问题, 以内蒙古老山沟公路大桥承台为依托, 建立了大体积混凝土三维有限元模型, 分析了粉煤灰掺量、浇筑温度、环境温度与养护措施对承台中心温度、里表温差与表面拉应力的影响。模拟结果表明: 混凝土表面拉应力随粉煤灰掺量增大而减小, 当掺量超过30%时, 降幅增大, 中心温度、里表温差和表面拉应力均随其掺量增大而减小, 可见掺加粉煤灰可有效降低混凝土水化热, 防止表面温差裂缝的产生; 当浇筑温度从5℃到30℃变化时, 中心最高温度从40.3℃升至58.1℃, 里表最大温差从8.6℃升至19.0℃, 表面最大拉应力从0.93 MPa升至1.66 MPa, 且随浇筑温度的增大, 中心最高温度和里表最大温差产生的时间有所提前, 表面拉应力呈线性增大趋势; 里表温差和表面拉应力都随环境温度增大而减小, 且表面拉应力与环境温度基本呈线性关系; 养护条件越好, 里表温差越小, 表面拉应力明显降低, 且前期表面拉应力增速减慢, 峰值出现时间推迟, 有利于裂缝控制。

     

  • 图  1  计算模型

    Figure  1.  Calculation model

    图  2  不同粉煤灰掺量下的中心温度与时间的关系曲线

    Figure  2.  Relational curves of central temperature and time under different fly ash contents

    图  3  不同粉煤灰掺量下的里表温差与时间的关系曲线

    Figure  3.  Relational curves of inside-outside temperature difference and time under different fly ash contents

    图  4  不同粉煤灰掺量下的表面拉应力与时间的关系曲线

    Figure  4.  Relational curves of surface tensile stress and time under different fly ash contents

    图  5  中心温度与粉煤灰掺量的关系曲线

    Figure  5.  Relational curves of center temperature and fly ash content

    图  6  里表温差与粉煤灰掺量的关系曲线

    Figure  6.  Relational curves of inside-outside temperature difference and fly ash content

    图  7  表面拉应力与粉煤灰掺量的关系曲线

    Figure  7.  Relational curves of surface tensile stress and fly ash content

    图  8  不同浇筑温度下中心温度与时间的关系曲线

    Figure  8.  Relational curves of central temperature and time under different pouring temperatures

    图  9  不同浇筑温度下里表温差与时间的关系曲线

    Figure  9.  Relational curves of inside-outside temperature difference and time under different pouring temperatures

    图  10  不同浇筑温度下表面拉应力与时间的关系曲线

    Figure  10.  Relational curves of surface tensile stress and time under different pouring temperatures

    图  11  中心温度与浇筑温度的关系曲线

    Figure  11.  Relational curves of center temperature and pouring temperature

    图  12  里表温差与浇筑温度的关系曲线

    Figure  12.  Relational curves of inside-outside temperature difference and pouring temperature

    图  13  表面拉应力与浇筑温度的关系曲线

    Figure  13.  Relational curves of surface tensile stress and pouring temperature

    图  14  不同环境温度下中心温度与时间的关系曲线

    Figure  14.  Relational curves of central temperature and time under different environmental temperatures

    图  15  不同环境温度下里表温差与时间的关系曲线

    Figure  15.  Relational curves of inside-outside temperature difference and time under different environmental temperatures

    图  16  不同环境温度下表面拉应力与时间的关系曲线

    Figure  16.  Relational curves of surface tensile stress and time under different environmental temperatures

    图  17  中心温度与环境温度的关系曲线

    Figure  17.  Relational curves of central temperature and environmental temperature

    图  18  里表温差与环境温度的关系曲线

    Figure  18.  Relational curves of inside-outside temperature difference and environmental temperature

    图  19  表面拉应力与环境温度的关系曲线

    Figure  19.  Relational curves of surface tensile stress and environmental temperature

    图  20  不同养护条件下中心温度与时间的关系曲线

    Figure  20.  Relational curves of central temperature and time under different maintaining conditions

    图  21  不同养护条件下表面温度与时间的关系曲线

    Figure  21.  Relational curves of surface temperature and time under different maintaining conditions

    图  22  不同养护条件下里表温差与时间的关系曲线

    Figure  22.  Relational curves of inside-outside temperature difference and time under different maintaining conditions

    图  23  不同养护条件下表面拉应力与时间的关系曲线

    Figure  23.  Relational curves of surface tensile stress and time under different maintaining conditions

    图  24  中心温度与养护条件的关系曲线

    Figure  24.  Relational curves of center temperature and maintaining condition

    图  25  表面温度与养护条件的关系曲线

    Figure  25.  Relational curves of surface temperature and maintaining condition

    图  26  里表温差与养护条件的关系曲线

    Figure  26.  Relational curves of inside-outside temperature difference and maintaining condition

    图  27  表面拉应力与养护条件的关系曲线

    Figure  27.  Relational curves of surface tensile stress and maintaining condition

    图  28  分层浇筑

    Figure  28.  Layered pouring

    图  29  浇筑现场

    Figure  29.  Pouring scene

    图  30  冷却循环水管

    Figure  30.  Cooling circulating water pipes

    图  31  混凝土表面抹平

    Figure  31.  Trowelling cement concrete surface

    表  1  材料计算参数

    Table  1.   Calculation parameters of materials

  • [1] 朱伯芳. 混凝土坝温度控制与防止裂缝的现状与展望[J]. 水利学报, 2006, 37(12): 1424-1432. doi: 10.3321/j.issn:0559-9350.2006.12.005

    ZHU Bo-fang. Current situation and prospect of temperature control and cracking prevention technology for concrete dam[J]. Journal of Hydraulic Engineering, 2006, 37(12): 1424-1432. (in Chinese) doi: 10.3321/j.issn:0559-9350.2006.12.005
    [2] 俞亚南, 张巍, 申永刚. 大体积承台混凝土早期表面开裂控制措施[J]. 浙江大学学报: 工学版, 2010, 44(8): 1621-1628. doi: 10.3785/j.issn.1008-973X.2010.08.033

    YU Ya-nan, ZHANG Wei, SHEN Yong-gang. Control measures for preventing crack on the surface of mass concrete abutment in early stage[J]. Journal of Zhejiang University: Engineering Science, 2010, 44(8): 1621-1628. (in Chinese) doi: 10.3785/j.issn.1008-973X.2010.08.033
    [3] LIN Feng, SONG Xiao-bin, GU Xiang-lin, et al. Cracking analysis of massive concrete walls with cracking control techniques[J]. Construction and Building Materials, 2012, 31: 12-21. doi: 10.1016/j.conbuildmat.2011.12.086
    [4] YIKICI T A, CHEN Hung-liang. Use of maturity method to estimate compressive strength of mass concrete[J]. Construction and Building Materials, 2015, 95: 802-812. doi: 10.1016/j.conbuildmat.2015.07.026
    [5] AMIN M N, KIM JS, LEE Y, et al. Simulation of the thermal stress in mass concrete using a thermal stressmeasuring device[J]. Cement and Concrete Research, 2009, 39(3): 154-164. doi: 10.1016/j.cemconres.2008.12.008
    [6] CHU I, LEE Y, AMIN M N, et al. Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure[J]. Construction and Building Materials, 2013, 45: 192-198. doi: 10.1016/j.conbuildmat.2013.03.056
    [7] 罗超云, 李志生, 周立. 嘉绍大桥承台超大体积混凝土无冷却水管温控技术研究[J]. 公路, 2012(7): 101-106. doi: 10.3969/j.issn.0451-0712.2012.07.021

    LUO Chao-yun, LI Zhi-sheng, ZHOU Li. Technical research on temperature control of mass concrete without cooling water pipe of Jiashao Bridge pile cap[J]. Highway, 2012(7): 101-106. (in Chinese) doi: 10.3969/j.issn.0451-0712.2012.07.021
    [8] ZORDAN T, BRISEGHELLA B, LIU Tao. Finite element model updating of a tied-arch bridge using Douglas-Reid method and Rosenbrock optimization algorithm[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(4): 280-292. doi: 10.1016/S2095-7564(15)30273-7
    [9] LIU Xing-hong, ZHANG Chao, CHANG Xiao-lin, et al. Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system[J]. Applied Thermal Engineering, 2015, 78: 449-459. doi: 10.1016/j.applthermaleng.2014.12.050
    [10] BRIFFAUT M, BENBOUDJEMA F, TORRENTI J M, et al. Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures[J]. Engineering Structures, 2011, 33(4): 1390-1401. doi: 10.1016/j.engstruct.2010.12.044
    [11] MATTHIEU B, FARID B, TORRENTI JM, et al. Analysis of semi-adiabatic tests for the prediction of early-age behavior of massive concrete structures[J]. Cement and Concrete Composites, 2012, 34(5): 634-641. doi: 10.1016/j.cemconcomp.2011.09.001
    [12] HA J H, JUNG Y S, CHO Y G. Thermal crack control in mass concrete structure using an automated curing system[J]. Automation in Construction, 2014, 45: 16-24. doi: 10.1016/j.autcon.2014.04.014
    [13] 李潘武, 曾宪哲, 李博渊, 等. 浇筑温度对大体积混凝土温度应力的影响[J]. 长安大学学报: 自然科学版, 2011, 31(5): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201105013.htm

    LI Pan-wu, ZENG Xian-zhe, LI Bo-yuan, et al. Influence of placement temperature on mass concrete temperature stress[J]. Journal of Chang'an University: Natural Science Edition, 2011, 31(5): 68-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201105013.htm
    [14] 李涛, 张洵安, 高娃. 基于ANSYS的大体积混凝土温度应力的研究[J]. 混凝土, 2010(12): 43-46. doi: 10.3969/j.issn.1002-3550.2010.12.014

    LI Tao, ZHANG Xun-an, GAO Wa. Research on thermal stress of the mass concrete based on ANSYS[J]. Concrete, 2010(12): 43-46. (in Chinese) doi: 10.3969/j.issn.1002-3550.2010.12.014
    [15] LI Yan, NIE Lei, WANG Bo. A numerical simulation of the temperature cracking propagation process when pouring mass concrete[J]. Automation in Construction, 2014, 37: 203-210. doi: 10.1016/j.autcon.2013.08.005
    [16] 苗胜军, 丛启龙, 任奋华, 等. 基于ANSYS的大体积混凝土的水化热模拟研究[J]. 四川建筑科学研究, 2009, 35(2): 194-197. doi: 10.3969/j.issn.1008-1933.2009.02.051

    MIAO Sheng-jun, CONG Qi-long, REN Fen-hua, et al. Simulation study of massive concrete hydration heat based on ANSYS[J]. Sichuan Building Science, 2009, 35(2): 194-197. (in Chinese) doi: 10.3969/j.issn.1008-1933.2009.02.051
    [17] KIM Y R, KHIL B S, JANG S J, et al. Effect of bariumbased phase change material(PCM)to control the heat of hydration on the mechanical properties of mass concrete[J]. Thermochimica Acta, 2015, 613: 100-107. doi: 10.1016/j.tca.2015.05.025
    [18] KLEMCZAK B A. Modeling thermal-shrinkage stresses in early age massive concrete structures-comparative study of basic models[J]. Archives of Civil and Mechanical Engineering, 2014, 14(4): 721-733. doi: 10.1016/j.acme.2014.01.002
    [19] 季日臣, 夏修身, 陈尧隆. 承台大体积混凝土温度场计算与温控防裂措施[J]. 混凝土, 2006(9): 92-94. doi: 10.3969/j.issn.1002-3550.2006.09.030

    JI Ri-chen, XIA Xiu-shen, CHEN Yao-long. Temperature field calculation and preventing crack measure in massive concrete about pillar abutment[J]. Concrete, 2006(9): 92-94. (in Chinese) doi: 10.3969/j.issn.1002-3550.2006.09.030
    [20] 袁广林, 黄方意, 沈华, 等. 大体积混凝土施工期的水化热温度场及温度应力研究[J]. 混凝土, 2005(2): 86-88. doi: 10.3969/j.issn.1002-3550.2005.02.024

    YUAN Guang-lin, HUANG Fang-yi, SHEN Hua, et al. Research on temperature field and thermal stress of hydration heat in massive concrete of construction period[J]. Concrete, 2005(2): 86-88. (in Chinese) doi: 10.3969/j.issn.1002-3550.2005.02.024
    [21] 胡昌斌, 孙增华, 王丽娟. 水泥混凝土路面早龄期温度场性状与控制方法[J]. 交通运输工程学报, 2013, 13(5): 1-9. doi: 10.3969/j.issn.1671-1637.2013.05.001

    HU Chang-bin, SUN Zeng-hua, WANG Li-juan. Characteristic and control method of early-age temperature field for cement concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 1-9. (in Chinese) doi: 10.3969/j.issn.1671-1637.2013.05.001
    [22] 闫海华, 李东, 周红兵, 等. 大型基础承台水化热分析与裂缝控制[J]. 工业建筑, 2005, 35(增): 862-866, 871. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ2005S1257.htm

    YAN Hai-hua, LI Dong, ZHOU Hong-bing, et al. Hydration heat analysis and crack control of large baseplate[J]. Industrial Construction, 2005, 35(S): 862-866, 871. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ2005S1257.htm
    [23] HONORIO T, BARY B, BENBOUDJEMA F. Evaluation of the contribution of boundary and initial conditions in the chemo-thermal analysis of a massive concrete structure[J]. Engineering Structures, 2014, 80: 173-188. doi: 10.1016/j.engstruct.2014.08.050
  • 加载中
图(31) / 表(1)
计量
  • 文章访问数:  807
  • HTML全文浏览量:  169
  • PDF下载量:  875
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-13
  • 刊出日期:  2016-04-25

目录

    /

    返回文章
    返回