留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于驾驶人路径选择偏好的OD行程时间预测方法

孙健 张颖 张纯

孙健, 张颖, 张纯. 基于驾驶人路径选择偏好的OD行程时间预测方法[J]. 交通运输工程学报, 2016, 16(2): 143-149. doi: 10.19818/j.cnki.1671-1637.2016.02.017
引用本文: 孙健, 张颖, 张纯. 基于驾驶人路径选择偏好的OD行程时间预测方法[J]. 交通运输工程学报, 2016, 16(2): 143-149. doi: 10.19818/j.cnki.1671-1637.2016.02.017
SUN Jian, ZHANG Ying, ZHANG Chun. Prediction method of OD travel time based on driver's route choice preference[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 143-149. doi: 10.19818/j.cnki.1671-1637.2016.02.017
Citation: SUN Jian, ZHANG Ying, ZHANG Chun. Prediction method of OD travel time based on driver's route choice preference[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 143-149. doi: 10.19818/j.cnki.1671-1637.2016.02.017

基于驾驶人路径选择偏好的OD行程时间预测方法

doi: 10.19818/j.cnki.1671-1637.2016.02.017
基金项目: 

国家自然科学基金项目 71101109

教育部人文社会科学研究项目 15YJCZH148

上海市科委“科技创新行动计划”项目 15692105400

详细信息
    作者简介:

    孙健(1978-), 男, 安徽芜湖人, 上海交通大学研究员, 工学博士, 从事城市驾驶行为与环境研究

  • 中图分类号: U491.1

Prediction method of OD travel time based on driver's route choice preference

More Information
  • 摘要: 以广东省深圳市3 000余辆浮动车近300万组数据为基础, 以地理信息系统技术为主要工具, 以最具代表性的深圳市福田区与罗湖区为研究区域, 确定了不同起讫(OD)点扩展半径。以浮动车唯一编号进行地图匹配, 根据确定的研究区域与扩展半径, 获取了浮动车OD路径与行程时间。确定了驾驶人在进行路径选择时的时间与空间偏好, 建立了基于路径选择偏好的OD行程时间预测方法。以平均绝对百分比误差、均方根相对误差与最大相对误差为指标, 对基于最短路径、最快路径与偏好路径的3种行程时间预测方法进行比较。比较结果表明: 与基于最短路径的预测方法相比, 采用提出方法的平均绝对百分比误差、均方根相对误差与最大相对误差分别降低了66.51%、61.24%、61.47%;与基于最快路径的预测方法相比, 采用提出方法的平均绝对百分比误差、均方根相对误差与最大相对误差分别降低了63.64%、59.70%、58.99%, 因此, 采用基于驾驶人路径选择偏好的OD行程时间预测方法可以显著提高OD行程时间的预测精度。

     

  • 图  1  地图匹配结果

    Figure  1.  Map matching result

    图  2  平均交通拥挤程度

    Figure  2.  Average traffic congestion degrees

    图  3  浮动车车次数统计结果

    Figure  3.  Statistical results of floating car numbers

    图  4  均方差系数计算结果

    Figure  4.  Calculation results of mean square coefficients of variance

    图  5  OD行程时间分布

    Figure  5.  Distribution of OD travel time

    图  6  路径行驶比例

    Figure  6.  Driving percentages of routes

    图  7  不同方法的比较

    Figure  7.  Comparison among different methods

    图  8  误差分析结果

    Figure  8.  Result of error analysis

    表  1  浮动车数据结构

    Table  1.   Structure of FCD

    下载: 导出CSV

    表  2  路径重合比例

    Table  2.   Routes coincidence percentages

    下载: 导出CSV

    表  3  道路运行情况

    Table  3.   Operation conditions of roads

    下载: 导出CSV
  • [1] 苏永云, 晏克非, 杨晓光, 等. VNS中动态行程时间与多端动态最短路算法[J]. 中国公路学报, 2001, 14(1): 97-99, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200101021.htm

    SU Yong-yun, YAN Ke-fei, YANG Xiao-guang, et al. Study of the algorithm of dynamic travel time and multi-end shortest path in VNS[J]. China Journal of Highway and Transport, 2001, 14(1): 97-99, 103. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200101021.htm
    [2] MIWA T, SAKAI T, MORIKAWA T. Route identification and travel time prediction using probe-car data[J]. International Journal of ITS Research, 2004, 2(1): 1-9.
    [3] 姚丽亚, 关宏志, 魏连雨, 等. 基于实时交通信息的行程时间估算及路径选择分析[J]. 公路交通科技, 2006, 23(11): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200611020.htm

    YAO Li-ya, GUAN Hong-zhi, WEI Lian-yu, et al. Study on link travel time estimation and route selection method based on real-time traffic information[J]. Journal of Highway and Transportation Research and Development, 2006, 23(11): 86-89. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200611020.htm
    [4] KWON J, COIFMAN B, BICKEL P. Day-to-day travel time trends and travel time prediction from loop detector data[J]. Transportation Research Record, 2000(1717): 120-129.
    [5] YGNACE J L, DRANE C, YIM Y B, et al. Travel time estimation on the San Francisco Bay Area network using cellular phones as probes[R]. Berkeley: University of California, 2000.
    [6] BERRY D S, GREEN F H. Techniques for measuring overall speeds in urban areas[C]//CRUM R W, BURGGRAF F, JR W N C. Proceedings of the Twenty-Ninth Annual Meeting of the Highway Research Board. Washington DC: TRB, 1950: 311-318.
    [7] 陈小鸿, 冯均佳, 杨超. 基于浮动车数据的行程时间可靠度特征研究[J]. 城市交通, 2007, 5(5): 42-45, 37. doi: 10.3969/j.issn.1672-5328.2007.05.008

    CHEN Xiao-hong, FENG Jun-jia, YANG Chao. Research on travel time reliability characteristics based on floating car data[J]. Urban Transport of China, 2007, 5(5): 42-45, 37. (in Chinese). doi: 10.3969/j.issn.1672-5328.2007.05.008
    [8] LI Yan-ying, MCDONALD M. Link travel time estimation using single GPS equipped probe vehicle[C]//IEEE. The IEEE 5th International Conference on Intelligent Transportation Systems. New York: IEEE, 2002: 932-937.
    [9] NANTHAWICHIT C, NAKATSUJI T, SUZUKI H. Application of probe vehicle data for real-time traffic state estimation and short-term travel time prediction on a freeway[J]. Transportation Research Record, 2003(1855): 1-16.
    [10] 张和生, 张毅, 温慧敏, 等. 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报: 工学版, 2007, 37(3): 533-537. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200703010.htm

    ZHANG He-sheng, ZHANG Yi, WEN Hui-min, et al. Estimation approaches of average link travel time using GPS data[J]. Journal of Jilin University: Engineering and Technology Edition, 2007, 37(3): 533-537. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200703010.htm
    [11] 李慧兵, 杨晓光, 罗莉华. 路段行程时间估计的浮动车数据挖掘方法[J]. 交通运输工程学报, 2014, 14(6): 100-109, 116. doi: 10.3969/j.issn.1671-1637.2014.06.013

    LI Hui-bing, YANG Xiao-guang, LUO Li-hua. Mining method of floating car data based on link travel time estimation[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 100-109, 116. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.06.013
    [12] RICE J, ZWET E V. A simple and effective method for predicting travel times on freeways[C]//IEEE. Proceedings of the 2001 IEEE Intelligent Transportation Systems. New York: IEEE, 2001: 227-232.
    [13] 方路平, 陈仕骁, 赵飞帆. 基于小样本浮动车系统的平均行程时间估计[J]. 计算机仿真, 2012, 29(9): 367-370. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201209092.htm

    FANG Lu-ping, CHEN Shi-xiao, ZHAO Fei-fan. Average link travel time estimation based on floating car of small sample size[J]. Computer Simulation, 2012, 29(9): 367-370. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201209092.htm
    [14] 杨兆升, 于悦, 杨薇. 基于固定型检测器和浮动车的路段行程时间获取技术[J]. 吉林大学学报: 工学版, 2009, 39(增2): 168-171. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2009S2036.htm

    YANG Zhao-sheng, YU Yue, YANG Wei. Acquisition of travel time based on inductive coil detector and probe vehicle[J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39(S2): 168-171. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2009S2036.htm
    [15] HAYNES R, JONES A P, SAUERZAPF V, et al. Validation of travel times to hospital estimated by GIS[J]. International Journal of Health Geographics, 2006, 5(12): 1-8.
    [16] SUN Jian, ZHANG Chun, ZHANG Li-hui, et al. Urban travel behavior analyses and route prediction based on floating car data[J]. Transportation Letters, 2014, 6(3): 118-125.
    [17] 陈宇飞, 智明, 秦国锋. 基于GIS的最优路径自适应规划算法[J]. 计算机工程, 2007, 33(1): 53-55, 58. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200701017.htm

    CHEN Yu-fei, ZHI Ming, QIN Guo-feng. Optimal shortestpath and auto-adapted plan algorithm based on GIS[J]. Computer Engineering, 2007, 33(1): 53-55, 58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200701017.htm
    [18] 孙健, 刘琼, 彭仲仁. 城市交通拥挤成因及时空演化规律分析——以深圳市为例[J]. 交通运输系统工程与信息, 2011, 11(5): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201105014.htm

    SUN Jian, LIU Qiong, PENG Zhong-ren. Research and analysis on causality and spatial-temporal evolution of urban traffic congestions—a case study on Shenzhen of China[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(5): 86-93. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201105014.htm
    [19] MINELLI S, IZADPANAH P, RAZAVI S. Evaluation of connected vehicle impact on mobility and mode choice[J]. Journal of Traffic and Transportation Engineering: English Edition, 2015, 2(5): 301-312.
    [20] QIN Xiao, SHEN Zhao, WEHBE N, et al. Evaluation of truck impact hazards for interstate overpasses[J]. Transportation Research Record, 2014(2402): 1-17.
    [21] 孙健, 张纯, 陈书恺, 等. 基于季节模型及Kalman滤波的道路行程时间预测[J]. 长安大学学报: 自然科学版, 2014, 34(6): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201406022.htm

    SUN Jian, ZHANG Chun, CHEN Shu-kai, et al. Route travel time estimation based on seasonal model and Kalman filtering algorithm[J]. Journal of Chang'an University: Natural Science Edition, 2014, 34(6): 145-151. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201406022.htm
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  137
  • PDF下载量:  771
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-15
  • 刊出日期:  2016-04-25

目录

    /

    返回文章
    返回