-
摘要: 为得到多年冻土区公路隧道围岩温度场和融化圈的发展规律, 建立了围岩融化圈的计算方法, 对融化圈深度和围岩温度的计算值与实测值进行了对比, 采用有限元法分析了支护对融化圈的影响。分析结果表明: 围岩温度平均误差不超过0.6℃, 融化圈深度误差不超过10%, 计算值与实测值吻合较好; 每延迟1 d施作喷射混凝土, 融化圈深度增大10cm, 喷射混凝土厚度每增加5 cm, 融化圈深度增加约10 cm; 一次模筑混凝土入模温度为15℃时的融化圈深度比入模温度为5℃时大了约10 cm; 当保温板厚度从5 cm增加到20 cm时, 融化圈深度减小2/3, 保温板及二次模筑混凝土水化热对融化圈深度有较大影响; 洞内风速为3.0 m·s-1时的融化圈深度比洞内风速为1.0m·s-1时减小了10~20 cm; 施作喷射混凝土30、60、90、120 d后, 洞内气温为8℃时的融化圈深度为洞内气温为2℃时的1.25、1.31、1.35、1.40倍。可见, 洞内气温宜控制在3℃5℃, 围岩开挖后应尽早施作支护, 宜选用低热或中热水泥以降低混凝土释放的水化热。Abstract: In order to obtain the temperature field of surrounding rock and the development law of thawing circle for highway tunnel in permafrost regions, the calculation method of thawing circle for surrounding rock was established, the calculated values and measured values of thawing circle depth and surrounding rock temperature were compared, and the finite element method was adopted to analyze the influence of support on the thawing circle. Analysis result shows that the average error of surrounding rock temperature is no more than 0.6℃, the error of thawing circle depth is no more than 10%, so the calculated value has better accordance with the measured value. When the time of operating shotcrete delays 1 d, the thawing circle depth increases by10 cm. When the thickness of shotcrete increases by 5cm, the thawing circle depth increases by about 10 cm. The thawing circle depth with molding temperature of 15 ℃ for the first molding concrete increases by about 10 cm compared to the molding temperature of 5 ℃. When the thickness of insulation board increases from 5cm to 20 cm, the thawing circle depth decreases by2/3. The insulation board and the hydration heat of secondary molding concrete have big influence on the thawing circle depth. The thawing circle depth with wind speed of 3. 0m·s-1 in hole decreases by 10-20 cm compared to wind speed of 1.0 m·s-1 in hole. 30, 60, 90, 120 d after shotcrete being operated, the thawing circle depths at air temperature of 8 ℃ in hole are1. 25, 1. 31, 1. 35, 1. 40 times of thawing circle depths at air temperature of 2 ℃ in hole respectively. Obviously, air temperature in hole should be controlled at 3 ℃-5 ℃, the support should be operated as early as possible after surrounding rock excavation, and low heat or medium heat cement should be used to decrease the hydration heat released by concrete.
-
Key words:
- tunnel engineering /
- thawing circle /
- finite element /
- permafrost region /
- support structure
-
表 1 监测频率
Table 1. Monitoring frequencies
表 2 对流换热系数
Table 2. Convective heat transfer coefficients
表 3 岩石、水与水热物理参数
Table 3. Thermal physical parameters of rocks, water and ice
表 4 页岩的热物理参数
Table 4. Thermal physical parameters of shale
表 5 凝灰岩的热物理参数
Table 5. Thermal physical parameters of tuff
表 6 衬砌的热物理参数
Table 6. Thermal physical parameters of lining
表 7 混凝土的质量配合比
Table 7. Quality mixture ratios of concretes
表 8 不同施作时机下围岩的融化圈深度
Table 8. Thawing circle depths of surrounding rocks with different operating times
表 9 不同喷射混凝土厚度下围岩的融化圈深度
Table 9. Thawing circle depths of surrounding rocks under different shotcrete thicknesses
表 10 不同入模温度下围岩的融化圈深度
Table 10. Thawing circle depths of surrounding rocks under different molding temperatures
表 11 有、无保温板时围岩的融化圈深度
Table 11. Thawing circle depths of surrounding rocks with and without insulation board
表 12 不同洞内风速下围岩的融化圈深度
Table 12. Thawing circle depths of surrounding rocks under different wind speeds in hole
-
[1] BONACINA C, COMINI G, FASANO A, et al. Numerical solution of phase-change problems[J]. International Journal of Heat Mass Transfer, 1973, 16(10): 1825-1832. doi: 10.1016/0017-9310(73)90202-0 [2] COMINI G, DEL GIUDICE S, LEWIS R W, et al. Finite element solution of non-linear heat conduction problems with special reference to phase change[J]. International Journal for Numerical Methods in Engineering, 1974, 8(3): 613-624. doi: 10.1002/nme.1620080314 [3] GAO G Y, CHEN Q S, ZHANG Q S, et al. Analytical elasto-plastic solution for stress and plastic zone of surrounding rock in cold region tunnels[J]. Cold Regions Science and Technology, 2012, 72(1): 50-57. [4] DEL GIUDICE S, COMINI G, LEWIS R W. Finite element simulation of freezing processes in soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2(3): 223-235. doi: 10.1002/nag.1610020304 [5] ZHANG Xue-fu, LAI Yuan-ming, YU Wen-bing, et al. Forecast analysis for the re-frozen of Fenghuoshan Permafrost Tunnel on Qing-Zang Railway[J]. Tunnelling and Underground Space Technology, 2004, 19(1): 45-56. doi: 10.1016/S0886-7798(03)00085-3 [6] BRONFENBRENER L. The modeling of the freezing process in fine-grained porous media: application to the frost heave estimation[J]. Cold Regions Science and Technology, 2009, 56(2/3): 130-134. [7] LAI Y M, WU Z, ZHU Y, et al. Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels[J]. Cold Regions Science and Technology, 1999, 29(1): 89-96. doi: 10.1016/S0165-232X(99)00006-3 [8] NEAUPANE K M, YAMABE T, YOSHINAKA R. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5): 563-580. doi: 10.1016/S0148-9062(99)00026-1 [9] SHAMSUNDAR N. Formulae for freezing outside a circular tube with axial variation of coolant temperature[J]. International Journal of Heat and Mass Transfer, 1982, 25(10): 1614-1616. doi: 10.1016/0017-9310(82)90043-6 [10] KONRAD J M, MORGENSTERN N R. The segregation potential of a freezing soil[J]. Canadian Geotechnical Journal, 1981, 18(4): 482-491. doi: 10.1139/t81-059 [11] MOTTAGHY D, RATH V. Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstruction[J]. Geophysical Journal International, 2006, 164(1): 236-245. doi: 10.1111/j.1365-246X.2005.02843.x [12] KONRAD J M, MORGENSTERN N R. Effects of applied pressure on freezing soils[J]. Canadian Geotechnical Journal, 1982, 19(4): 494-505. doi: 10.1139/t82-053 [13] 沈世伟, 夏才初, 黎岩, 等. 喷射混凝土对多年冻土区公路隧道围岩冻融圈的影响规律研究[J]. 现代隧道技术, 2015, 52(1): 82-88, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501013.htmSHEN Shi-wei, XIA Cai-chu, LI Yan, et al. Research on the influence of sprayed concrete on the surrounding rock freezethaw circle of highway tunnels in permafrost regions[J]. Modern Tunnelling Technology, 2015, 52(1): 82-88, 97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501013.htm [14] 刘瑞全. 高寒地区公路隧道防寒泄水洞设置技术研究[D]. 重庆: 重庆交通大学, 2014.LIU Rui-quan. Research of setting technology for winter protection drainage hole of highway tunnel in high altitude and cold regions[D]. Chongqing: Chongqing Jiaotong University, 2014. (in Chinese). [15] 李云. 高寒隧道温度场分布规律及防寒保温技术研究[D]. 重庆: 重庆交通大学, 2014.LI Yun. Study on distribution of temperature field and cold insulation technology on tunnel in high attitude and cold zones[D]. Chongqing: Chongqing Jiaotong University, 2014. (in Chinese). [16] 宋冶, 廖凯, 刘玉勇. 高原冻土隧道冻融圈检测系统[J]. 现代隧道技术, 2013, 50(6): 14-18, 79. doi: 10.3969/j.issn.1009-6582.2013.06.003SONG Ye, LIAO Kai, LIU Yu-yong. Monitoring system for the freeze-thaw circle around tunnels in a plateau featuring frozen ground[J]. Modern Tunnelling Technology, 2013, 50(6): 14-18, 79. (in Chinese). doi: 10.3969/j.issn.1009-6582.2013.06.003 [17] 陈建勋, 罗彦斌. 寒冷地区隧道温度场的变化规律[J]. 交通运输工程学报, 2008, 8(2): 44-48. doi: 10.3321/j.issn:1671-1637.2008.02.010CHEN Jian-xun, LUO Yan-bin. Changing rules of temperature field for tunnel in cold area[J]. Journal of Traffic and Transportation Engineering, 2008, 8(2): 44-48. (in Chinese). doi: 10.3321/j.issn:1671-1637.2008.02.010 [18] 张国柱, 夏才初, 殷卓. 寒区隧道轴向及径向温度分布理论解[J]. 同济大学学报: 自然科学版, 2010, 38(8): 1117-1122, 1160. doi: 10.3969/j.issn.0253-374x.2010.08.003ZHANG Guo-zhu, XIA Cai-chu, YIN Zhuo. Analytical solution to axial and radial temperature of tunnel in cold region[J]. Journal of Tongji University: Natural Science, 2010, 38(8): 1117-1122, 1160. (in Chinese). doi: 10.3969/j.issn.0253-374x.2010.08.003 [19] 黄双林. 昆仑山隧道施工期间围岩冻融圈的初步研究[J]. 冰川冻土, 2003, 25(增1): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT2003S1022.htmHUANG Shuang-lin. Study on the active ring of permafrost in the Kunlunshan Tunnel during tunneling[J]. Journal of Glaciology and Geocryology, 2003, 25(S1): 100-103. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT2003S1022.htm [20] 许鹏. 寒冷地区隧道温度场分布及变化规律研究[D]. 西安: 长安大学, 2012.XU Peng. Research on temperature field and variability of tunnel in cold region[D]. Xi'an: Chang'an University, 2012. (in Chinese). [21] 夏才初, 范东方, 李志厚, 等. 隧道多年冻土段隔热层厚度解析计算结果的探讨[J]. 土木工程学报, 2015, 48(2): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201502018.htmXIA Cai-chu, FAN Dong-fang, LI Zhi-hou, et al. Discussion on analytical calculation for thermal-insulation layer thickness of tunnel in permafrost area[J]. China Civil Engineering Journal, 2015, 48(2): 118-124. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201502018.htm [22] 夏才初, 范东方, 韩常领. 寒区隧道不同类型冻土段隔热(保温)层铺设厚度计算方法[J]. 中国公路学报, 2013, 26(5): 131-139. doi: 10.3969/j.issn.1001-7372.2013.05.018XIA Cai-chu, FAN Dong-fang, HAN Chang-ling. Piecewise calculation method for insulation layer thickness in cold region tunnels[J]. China Journal of Highway and Transport, 2013, 26(5): 131-139. (in Chinese). doi: 10.3969/j.issn.1001-7372.2013.05.018 [23] 王燕, 陈玉香, 凌道盛, 等. 桐柏电站混凝土基础水化热温度场有限元分析[J]. 岩石力学与工程学报, 2007, 26(增1): 3266-3270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1100.htmWANG Yan, CHEN Yu-xiang, LING Dao-sheng, et al. Finite element analysis of hydration heat temperature field in concrete foundation of Tongbai power station[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3266-3270. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1100.htm [24] SASS J H, LACHENBRUCH A H, MUNROE R J. Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations[J]. Journal of Geophysical Research, 1971, 76(14): 3391-3401. doi: 10.1029/JB076i014p03391 [25] LING Feng, ZHANG Ting-jun. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water[J]. Cold Regions Science and Technology, 2004, 38(1): 1-15. doi: 10.1016/S0165-232X(03)00057-0 [26] 肖建庄, 宋志文, 张枫. 混凝土导热系数试验与分析[J]. 建筑材料学报, 2010, 13(1): 17-21. doi: 10.3969/j.issn.1007-9629.2010.01.004XIAO Jian-zhuang, SONG Zhi-wen, ZHANG Feng. An experimental study on thermal conductivity of concrete[J]. Journal of Building Materials, 2010, 13(1): 17-21. (in Chinese). doi: 10.3969/j.issn.1007-9629.2010.01.004 [27] 郤保平, 赵阳升. 高温高压下花岗岩中钻孔围岩的热物理及力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1245-1253. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006022.htmXI Bao-ping, ZHAO Yang-sheng. Experimental study of thermophysico-mechanical property of drilling surrounding rock in granite under high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1245-1253. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006022.htm [28] 杨更社, 袁延召, 申艳军, 等. 白垩系砂岩导热系数与微观结构关联分析[J]. 煤炭工程, 2015, 47(9): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201509030.htmYANG Geng-she, YUAN Yan-zhao, SHEN Yan-jun, et al. Analysis on thermal conductivity of cretaceous sandstone associated with microstructure[J]. Coal Engineering, 2015, 47(9): 82-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201509030.htm [29] 胡增辉, 李晓昭, 赵晓豹, 等. 隧道围岩温度场分布的数值分析及预测[J]. 地下空间与工程学报, 2009, 5(5): 867-872. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200905005.htmHU Zeng-hui, LI Xiao-zhao, ZHAO Xiao-bao, et al. Analysis and prediction of the temperature distribution around tunnels[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(5): 867-872. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200905005.htm [30] 曲星, 李宁, 张志强. 围岩力学参数对水工隧洞运行期衬砌受力影响分析及工程应用[J]. 西安理工大学学报, 2012, 28(4): 404-410. doi: 10.3969/j.issn.1006-4710.2012.04.005QU Xing, LI Ning, ZHANG Zhi-qiang. Influence of mechanical parameter of surrounding rocks on lining of hydraulic tunnel and its application in engineering[J]. Journal of Xi'an University of Technology, 2012, 28(4): 404-410. (in Chinese). doi: 10.3969/j.issn.1006-4710.2012.04.005 [31] 冯强, 蒋斌松. 多层介质寒区公路隧道保温层厚度计算的一种解析方法[J]. 岩土工程学报, 2014, 36(10): 1879-1887. doi: 10.11779/CJGE201410016FENG Qiang, JIANG Bin-song. Analytical method for insulation layer thickness of highway tunnels with multilayer dielectric in cold regions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1879-1887. (in Chinese). doi: 10.11779/CJGE201410016