留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多年冻土区公路隧道融化圈计算方法

姚红志 张晓旭 董长松

姚红志, 张晓旭, 董长松. 多年冻土区公路隧道融化圈计算方法[J]. 交通运输工程学报, 2016, 16(4): 141-150. doi: 10.19818/j.cnki.1671-1637.2016.04.015
引用本文: 姚红志, 张晓旭, 董长松. 多年冻土区公路隧道融化圈计算方法[J]. 交通运输工程学报, 2016, 16(4): 141-150. doi: 10.19818/j.cnki.1671-1637.2016.04.015
YAO Hong-zhi, ZHANG Xiao-xu, DONG Zhang-song. Calculation method of thawing circle for highway tunnel in permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 141-150. doi: 10.19818/j.cnki.1671-1637.2016.04.015
Citation: YAO Hong-zhi, ZHANG Xiao-xu, DONG Zhang-song. Calculation method of thawing circle for highway tunnel in permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 141-150. doi: 10.19818/j.cnki.1671-1637.2016.04.015

多年冻土区公路隧道融化圈计算方法

doi: 10.19818/j.cnki.1671-1637.2016.04.015
基金项目: 

国家科技支撑计划项目 2014BAG05B05

详细信息
    作者简介:

    姚红志(1979-), 男, 湖南邵东人, 中交第一公路勘察设计研究院有限公司高级工程师, 从事地下工程研究

  • 中图分类号: U451.2

Calculation method of thawing circle for highway tunnel in permafrost regions

More Information
    Author Bio:

    YAO Hong-zhi(1979-), male, senior engineer, +86-29-88322888, 120209040@qq.com

  • 摘要: 为得到多年冻土区公路隧道围岩温度场和融化圈的发展规律, 建立了围岩融化圈的计算方法, 对融化圈深度和围岩温度的计算值与实测值进行了对比, 采用有限元法分析了支护对融化圈的影响。分析结果表明: 围岩温度平均误差不超过0.6℃, 融化圈深度误差不超过10%, 计算值与实测值吻合较好; 每延迟1 d施作喷射混凝土, 融化圈深度增大10cm, 喷射混凝土厚度每增加5 cm, 融化圈深度增加约10 cm; 一次模筑混凝土入模温度为15℃时的融化圈深度比入模温度为5℃时大了约10 cm; 当保温板厚度从5 cm增加到20 cm时, 融化圈深度减小2/3, 保温板及二次模筑混凝土水化热对融化圈深度有较大影响; 洞内风速为3.0 m·s-1时的融化圈深度比洞内风速为1.0m·s-1时减小了10~20 cm; 施作喷射混凝土30、60、90、120 d后, 洞内气温为8℃时的融化圈深度为洞内气温为2℃时的1.25、1.31、1.35、1.40倍。可见, 洞内气温宜控制在3℃5℃, 围岩开挖后应尽早施作支护, 宜选用低热或中热水泥以降低混凝土释放的水化热。

     

  • 图  1  姜路岭隧道洞口

    Figure  1.  Portal of Jiangluling Tunnel

    图  2  围岩温度传感器安装现场

    Figure  2.  Installation scenes of temperature sensor for surrounding rock

    图  3  不同深度处的围岩温度-时间曲线

    Figure  3.  Curves of surrounding rock temperature versus time at different depths

    图  4  融化圈深度-时间曲线

    Figure  4.  Curve of thawing circle depth versus time

    图  5  有限元计算模型

    Figure  5.  Finite element calculation model

    图  6  融化圈深度计算值与实测值的对比

    Figure  6.  Comparison of calculated values and measured values for thawing circle depth

    图  7  围岩温度计算值与实测值的对比

    Figure  7.  Comparison of calculated values and measured values for surrounding rock temperature

    图  8  不同工况下围岩的融化圈深度

    Figure  8.  Thawing circle depths of surrounding rocks under different working conditions

    图  9  保温板两侧温度

    Figure  9.  Temperatures on two sides of insulation board

    图  10  不同保温板厚度下围岩的融化圈深度

    Figure  10.  Thawing circle depths of surrounding rocks with different thicknesses of insulation board

    图  11  不同洞内气温下围岩的融化圈深度

    Figure  11.  Thawing circle depths of surrounding rocks under different air temperatures in hole

    表  1  监测频率

    Table  1.   Monitoring frequencies

    下载: 导出CSV

    表  2  对流换热系数

    Table  2.   Convective heat transfer coefficients

    下载: 导出CSV

    表  3  岩石、水与水热物理参数

    Table  3.   Thermal physical parameters of rocks, water and ice

    下载: 导出CSV

    表  4  页岩的热物理参数

    Table  4.   Thermal physical parameters of shale

    下载: 导出CSV

    表  5  凝灰岩的热物理参数

    Table  5.   Thermal physical parameters of tuff

    下载: 导出CSV

    表  6  衬砌的热物理参数

    Table  6.   Thermal physical parameters of lining

    下载: 导出CSV

    表  7  混凝土的质量配合比

    Table  7.   Quality mixture ratios of concretes

    下载: 导出CSV

    表  8  不同施作时机下围岩的融化圈深度

    Table  8.   Thawing circle depths of surrounding rocks with different operating times

    下载: 导出CSV

    表  9  不同喷射混凝土厚度下围岩的融化圈深度

    Table  9.   Thawing circle depths of surrounding rocks under different shotcrete thicknesses

    下载: 导出CSV

    表  10  不同入模温度下围岩的融化圈深度

    Table  10.   Thawing circle depths of surrounding rocks under different molding temperatures

    下载: 导出CSV

    表  11  有、无保温板时围岩的融化圈深度

    Table  11.   Thawing circle depths of surrounding rocks with and without insulation board

    下载: 导出CSV

    表  12  不同洞内风速下围岩的融化圈深度

    Table  12.   Thawing circle depths of surrounding rocks under different wind speeds in hole

    下载: 导出CSV
  • [1] BONACINA C, COMINI G, FASANO A, et al. Numerical solution of phase-change problems[J]. International Journal of Heat Mass Transfer, 1973, 16(10): 1825-1832. doi: 10.1016/0017-9310(73)90202-0
    [2] COMINI G, DEL GIUDICE S, LEWIS R W, et al. Finite element solution of non-linear heat conduction problems with special reference to phase change[J]. International Journal for Numerical Methods in Engineering, 1974, 8(3): 613-624. doi: 10.1002/nme.1620080314
    [3] GAO G Y, CHEN Q S, ZHANG Q S, et al. Analytical elasto-plastic solution for stress and plastic zone of surrounding rock in cold region tunnels[J]. Cold Regions Science and Technology, 2012, 72(1): 50-57.
    [4] DEL GIUDICE S, COMINI G, LEWIS R W. Finite element simulation of freezing processes in soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2(3): 223-235. doi: 10.1002/nag.1610020304
    [5] ZHANG Xue-fu, LAI Yuan-ming, YU Wen-bing, et al. Forecast analysis for the re-frozen of Fenghuoshan Permafrost Tunnel on Qing-Zang Railway[J]. Tunnelling and Underground Space Technology, 2004, 19(1): 45-56. doi: 10.1016/S0886-7798(03)00085-3
    [6] BRONFENBRENER L. The modeling of the freezing process in fine-grained porous media: application to the frost heave estimation[J]. Cold Regions Science and Technology, 2009, 56(2/3): 130-134.
    [7] LAI Y M, WU Z, ZHU Y, et al. Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels[J]. Cold Regions Science and Technology, 1999, 29(1): 89-96. doi: 10.1016/S0165-232X(99)00006-3
    [8] NEAUPANE K M, YAMABE T, YOSHINAKA R. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5): 563-580. doi: 10.1016/S0148-9062(99)00026-1
    [9] SHAMSUNDAR N. Formulae for freezing outside a circular tube with axial variation of coolant temperature[J]. International Journal of Heat and Mass Transfer, 1982, 25(10): 1614-1616. doi: 10.1016/0017-9310(82)90043-6
    [10] KONRAD J M, MORGENSTERN N R. The segregation potential of a freezing soil[J]. Canadian Geotechnical Journal, 1981, 18(4): 482-491. doi: 10.1139/t81-059
    [11] MOTTAGHY D, RATH V. Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstruction[J]. Geophysical Journal International, 2006, 164(1): 236-245. doi: 10.1111/j.1365-246X.2005.02843.x
    [12] KONRAD J M, MORGENSTERN N R. Effects of applied pressure on freezing soils[J]. Canadian Geotechnical Journal, 1982, 19(4): 494-505. doi: 10.1139/t82-053
    [13] 沈世伟, 夏才初, 黎岩, 等. 喷射混凝土对多年冻土区公路隧道围岩冻融圈的影响规律研究[J]. 现代隧道技术, 2015, 52(1): 82-88, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501013.htm

    SHEN Shi-wei, XIA Cai-chu, LI Yan, et al. Research on the influence of sprayed concrete on the surrounding rock freezethaw circle of highway tunnels in permafrost regions[J]. Modern Tunnelling Technology, 2015, 52(1): 82-88, 97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501013.htm
    [14] 刘瑞全. 高寒地区公路隧道防寒泄水洞设置技术研究[D]. 重庆: 重庆交通大学, 2014.

    LIU Rui-quan. Research of setting technology for winter protection drainage hole of highway tunnel in high altitude and cold regions[D]. Chongqing: Chongqing Jiaotong University, 2014. (in Chinese).
    [15] 李云. 高寒隧道温度场分布规律及防寒保温技术研究[D]. 重庆: 重庆交通大学, 2014.

    LI Yun. Study on distribution of temperature field and cold insulation technology on tunnel in high attitude and cold zones[D]. Chongqing: Chongqing Jiaotong University, 2014. (in Chinese).
    [16] 宋冶, 廖凯, 刘玉勇. 高原冻土隧道冻融圈检测系统[J]. 现代隧道技术, 2013, 50(6): 14-18, 79. doi: 10.3969/j.issn.1009-6582.2013.06.003

    SONG Ye, LIAO Kai, LIU Yu-yong. Monitoring system for the freeze-thaw circle around tunnels in a plateau featuring frozen ground[J]. Modern Tunnelling Technology, 2013, 50(6): 14-18, 79. (in Chinese). doi: 10.3969/j.issn.1009-6582.2013.06.003
    [17] 陈建勋, 罗彦斌. 寒冷地区隧道温度场的变化规律[J]. 交通运输工程学报, 2008, 8(2): 44-48. doi: 10.3321/j.issn:1671-1637.2008.02.010

    CHEN Jian-xun, LUO Yan-bin. Changing rules of temperature field for tunnel in cold area[J]. Journal of Traffic and Transportation Engineering, 2008, 8(2): 44-48. (in Chinese). doi: 10.3321/j.issn:1671-1637.2008.02.010
    [18] 张国柱, 夏才初, 殷卓. 寒区隧道轴向及径向温度分布理论解[J]. 同济大学学报: 自然科学版, 2010, 38(8): 1117-1122, 1160. doi: 10.3969/j.issn.0253-374x.2010.08.003

    ZHANG Guo-zhu, XIA Cai-chu, YIN Zhuo. Analytical solution to axial and radial temperature of tunnel in cold region[J]. Journal of Tongji University: Natural Science, 2010, 38(8): 1117-1122, 1160. (in Chinese). doi: 10.3969/j.issn.0253-374x.2010.08.003
    [19] 黄双林. 昆仑山隧道施工期间围岩冻融圈的初步研究[J]. 冰川冻土, 2003, 25(增1): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT2003S1022.htm

    HUANG Shuang-lin. Study on the active ring of permafrost in the Kunlunshan Tunnel during tunneling[J]. Journal of Glaciology and Geocryology, 2003, 25(S1): 100-103. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT2003S1022.htm
    [20] 许鹏. 寒冷地区隧道温度场分布及变化规律研究[D]. 西安: 长安大学, 2012.

    XU Peng. Research on temperature field and variability of tunnel in cold region[D]. Xi'an: Chang'an University, 2012. (in Chinese).
    [21] 夏才初, 范东方, 李志厚, 等. 隧道多年冻土段隔热层厚度解析计算结果的探讨[J]. 土木工程学报, 2015, 48(2): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201502018.htm

    XIA Cai-chu, FAN Dong-fang, LI Zhi-hou, et al. Discussion on analytical calculation for thermal-insulation layer thickness of tunnel in permafrost area[J]. China Civil Engineering Journal, 2015, 48(2): 118-124. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201502018.htm
    [22] 夏才初, 范东方, 韩常领. 寒区隧道不同类型冻土段隔热(保温)层铺设厚度计算方法[J]. 中国公路学报, 2013, 26(5): 131-139. doi: 10.3969/j.issn.1001-7372.2013.05.018

    XIA Cai-chu, FAN Dong-fang, HAN Chang-ling. Piecewise calculation method for insulation layer thickness in cold region tunnels[J]. China Journal of Highway and Transport, 2013, 26(5): 131-139. (in Chinese). doi: 10.3969/j.issn.1001-7372.2013.05.018
    [23] 王燕, 陈玉香, 凌道盛, 等. 桐柏电站混凝土基础水化热温度场有限元分析[J]. 岩石力学与工程学报, 2007, 26(增1): 3266-3270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1100.htm

    WANG Yan, CHEN Yu-xiang, LING Dao-sheng, et al. Finite element analysis of hydration heat temperature field in concrete foundation of Tongbai power station[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3266-3270. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1100.htm
    [24] SASS J H, LACHENBRUCH A H, MUNROE R J. Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations[J]. Journal of Geophysical Research, 1971, 76(14): 3391-3401. doi: 10.1029/JB076i014p03391
    [25] LING Feng, ZHANG Ting-jun. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water[J]. Cold Regions Science and Technology, 2004, 38(1): 1-15. doi: 10.1016/S0165-232X(03)00057-0
    [26] 肖建庄, 宋志文, 张枫. 混凝土导热系数试验与分析[J]. 建筑材料学报, 2010, 13(1): 17-21. doi: 10.3969/j.issn.1007-9629.2010.01.004

    XIAO Jian-zhuang, SONG Zhi-wen, ZHANG Feng. An experimental study on thermal conductivity of concrete[J]. Journal of Building Materials, 2010, 13(1): 17-21. (in Chinese). doi: 10.3969/j.issn.1007-9629.2010.01.004
    [27] 郤保平, 赵阳升. 高温高压下花岗岩中钻孔围岩的热物理及力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1245-1253. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006022.htm

    XI Bao-ping, ZHAO Yang-sheng. Experimental study of thermophysico-mechanical property of drilling surrounding rock in granite under high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1245-1253. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006022.htm
    [28] 杨更社, 袁延召, 申艳军, 等. 白垩系砂岩导热系数与微观结构关联分析[J]. 煤炭工程, 2015, 47(9): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201509030.htm

    YANG Geng-she, YUAN Yan-zhao, SHEN Yan-jun, et al. Analysis on thermal conductivity of cretaceous sandstone associated with microstructure[J]. Coal Engineering, 2015, 47(9): 82-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201509030.htm
    [29] 胡增辉, 李晓昭, 赵晓豹, 等. 隧道围岩温度场分布的数值分析及预测[J]. 地下空间与工程学报, 2009, 5(5): 867-872. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200905005.htm

    HU Zeng-hui, LI Xiao-zhao, ZHAO Xiao-bao, et al. Analysis and prediction of the temperature distribution around tunnels[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(5): 867-872. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200905005.htm
    [30] 曲星, 李宁, 张志强. 围岩力学参数对水工隧洞运行期衬砌受力影响分析及工程应用[J]. 西安理工大学学报, 2012, 28(4): 404-410. doi: 10.3969/j.issn.1006-4710.2012.04.005

    QU Xing, LI Ning, ZHANG Zhi-qiang. Influence of mechanical parameter of surrounding rocks on lining of hydraulic tunnel and its application in engineering[J]. Journal of Xi'an University of Technology, 2012, 28(4): 404-410. (in Chinese). doi: 10.3969/j.issn.1006-4710.2012.04.005
    [31] 冯强, 蒋斌松. 多层介质寒区公路隧道保温层厚度计算的一种解析方法[J]. 岩土工程学报, 2014, 36(10): 1879-1887. doi: 10.11779/CJGE201410016

    FENG Qiang, JIANG Bin-song. Analytical method for insulation layer thickness of highway tunnels with multilayer dielectric in cold regions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1879-1887. (in Chinese). doi: 10.11779/CJGE201410016
  • 加载中
图(11) / 表(12)
计量
  • 文章访问数:  682
  • HTML全文浏览量:  54
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-21
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回