[1] |
隽志才, 曹鹏, 吴文静. 基于认知心理学的驾驶员交通标志视认性理论分析[J]. 中国安全科学学报, 2005, 15(8): 8-11. doi: 10.3969/j.issn.1003-3033.2005.08.002JUAN Zhi-cai, CAO Peng, WU Wen-jing. Study on driver traffic signs comprehension based on cognitive psychology[J]. China Safety Science Journal, 2005, 15(8): 8-11. (in Chinese). doi: 10.3969/j.issn.1003-3033.2005.08.002
|
[2] |
LIU Han, LIU Ding, LI Qi. Real-time recognition of road traffic sign in moving scene image using genetic algorithm[C]//IEEE. Proceedings of the 4th World Congress on Intelligent Control and Automation. New York: IEEE, 2002: 1027-1030.
|
[3] |
VÁZQUEZ-REINA A, LAFUENTE-ARROYO S, SIEGMANN P, et al. Traffic sign shape classification based on correlation techniques[C]//WSEAS. Proceedings of the 5th WSEASInternational Conference on Signal Processing, Computational Geometry and Artificial Vision. Stevens Point: WSEAS, 2005: 149-154.
|
[4] |
LAFUENTE-ARROYO S, SALCEDO-SANZ S, MALDONADO-BASCÓN S, et al. A decision support system for the automatic management of keep-clear signs based on support vector machines and geographic information systems[J]. Expert Systems with Applications, 2010, 37(1): 767-773. doi: 10.1016/j.eswa.2009.05.102
|
[5] |
OVERETT G, PETERSSON L. Large scale sign detection using HOG feature variants[C]//IEEE. 2011 IEEEIntelligent Vehicles Symposium(IV). New York: IEEE, 2011: 326-331.
|
[6] |
WANG Gang-yi, REN Guang-hui, WU Zhi-lu, et al. A hierarchical method for traffic sign classification with support vector machines[C]//IEEE. The 2013International Joint Conference on Neural Networks. New York: IEEE, 2013: 1-6.
|
[7] |
SALTI S, PETRELLI A, TOMBARI F, et al. A traffic sign detection pipeline based on interest region extraction[C]//IEEE. The 2013International Joint Conference on Neural Networks. New York: IEEE, 2013: 1-7.
|
[8] |
XIE Yuan, LIU Li-feng, LI Cui-hua, et al. Unifying visual saliency with HOG feature learning for traffic sign detection[C]//IEEE. 2009IEEE Intelligent Vehicles Symposium. New York: IEEE, 2009: 24-29.
|
[9] |
YAN Qiong, XU Li, SHI Jian-ping, et al. Hierarchical saliency detection[C]//IEEE. 2013IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2013: 1155-1162.
|
[10] |
WEI Yi-chen, WEN Fang, ZHU Wang-jiang, et al. Geodesic saliency using background priors[C]//FITZGIBBON A, LAZEBNIK S, PERONA P, et al. 12th European Conference on Computer Vision. Berlin: Springer, 2012: 29-42.
|
[11] |
PERAZZI F, KRÄHENBÜHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//IEEE. 2012 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2012: 733-740.
|
[12] |
YANG Chuan, ZHANG Li-he, LU Hu-chuan, et al. Saliency detection via graph-based manifold ranking[C]//IEEE. 2013IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2013: 3166-3173.
|
[13] |
YUAN Xue, GUO Jia-qi, HAO Xiao-li, et al. Traffic sign detection via graph-based ranking and segmentation algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(12): 1509-1521. doi: 10.1109/TSMC.2015.2427771
|
[14] |
SERMANET P, CHINTALA S, LECUN Y. Convolutional neural networks applied to house numbers digit classification[C]//IEEE. 21st International Conference on Pattern Recognition. New York: IEEE, 2012: 3288-3291.
|
[15] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//PEREIRA F, BURGES C J C, BOTTOU L, et al. Advances in Neural Information Processing Systems 25. South Lake Tahoe: NIPS Foundation, 2012: 1097-1105.
|
[16] |
SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]//IEEE. The 2011International Joint Conference on Neural Networks. New York: IEEE, 2011: 2809-2813.
|
[17] |
WU Yi-hui, LIU Yu-long, LI Jian-min, et al. Traffic sign detection based on convolutional neural networks[C]//IEEE. The 2013 International Joint Conference on Neural Networks. New York: IEEE, 2013: 1-7.
|
[18] |
JIA Yang-qing, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]//ACM. Proceedings of the 22nd ACM International Conference on Multimedia. New York: ACM, 2014: 675-678.
|
[19] |
SZEGEDY C, LIU Wei, JIA Yang-qing, et al. Going deeper with convolutions[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
|
[20] |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//FLEET D, PAJDLA T, SCHIELE B, et al. 13th European Conference on Computer Vision. Berlin: Springer, 2014: 818-833.
|
[21] |
BESAG J. Spatial interaction and the statisticalanalysis of lattice systems[J]. Journal of the Royal Statistical Society. Series B: Methodological, 1974, 36(2): 192-236.
|
[22] |
LAFFERTY J, M CALLUM A, PEREIRA F. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//ACM. Proceedings of the 18th International Conference on Machine Learning. New York: ACM, 2001: 282-289.
|
[23] |
YEDIDIA J S, FREEMAN W T, WEISS Y. Generalized belief propagation[C]//LEEN T K, DIETTERICH T G, TRESP V. Advances in Neural Information Processing Systems 13. Denver: NIPS Foundation, 2000: 689-695.
|
[24] |
HOUBEN S, STALLKAMP J, SALMEN J, et al. Detection of traffic signs in real-world images: the German traffic sign detection benchmark[C]//IEEE. The 2013 International Joint Conference on Neural Networks. New York: IEEE, 2013: 1-8.
|
[25] |
STSLLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark: a multi-class classification competition[C]//IEEE. The 2011International Joint Conference on Neural Networks. New York: IEEE, 2011: 1453-1460.
|
[26] |
WEN Cheng-lu, LI J, LUO Huan, et al. Spatial-related traffic sign inspection for inventory purposes using mobile laser scanning data[J]. IEEE Transactions on Intelligent Transactions Systems, 2016, 17(1): 27-37.
|
[27] |
ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels[R]. Lausanne: École Polytechnique Féderale de Lausanne, 2010.
|
[28] |
MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530-549.
|
[29] |
CHENG Ming-ming, WARRELL J, LIN Wen-yan, et al. Efficient salient region detection with soft image abstraction[C]//IEEE. 2013 IEEE International Conference on Computer Vision. New York: IEEE, 2013: 1529-1536.
|
[30] |
TONG Na, LU Hu-chuan, RUAN Xiang, et al. Salient object detection via bootstrap learning[C]//IEEE. 2015 IEEEConference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1884-1892.
|
[31] |
QIN Yao, LU Hu-chuan, XU Yi-qun, et al. Saliency detection via cellular automata[C]//IEEE. 2015IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 110-119.
|