留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图模型与卷积神经网络的交通标志识别方法

刘占文 赵祥模 李强 沈超 王姣姣

刘占文, 赵祥模, 李强, 沈超, 王姣姣. 基于图模型与卷积神经网络的交通标志识别方法[J]. 交通运输工程学报, 2016, 16(5): 122-131. doi: 10.19818/j.cnki.1671-1637.2016.05.014
引用本文: 刘占文, 赵祥模, 李强, 沈超, 王姣姣. 基于图模型与卷积神经网络的交通标志识别方法[J]. 交通运输工程学报, 2016, 16(5): 122-131. doi: 10.19818/j.cnki.1671-1637.2016.05.014
LIU Zhan-wen, ZHAO Xiang-mo, LI Qiang, SHEN Chao, WANG Jiao-jiao. Traffic sign recognition method based on graphical model and convolutional neural network[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 122-131. doi: 10.19818/j.cnki.1671-1637.2016.05.014
Citation: LIU Zhan-wen, ZHAO Xiang-mo, LI Qiang, SHEN Chao, WANG Jiao-jiao. Traffic sign recognition method based on graphical model and convolutional neural network[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 122-131. doi: 10.19818/j.cnki.1671-1637.2016.05.014

基于图模型与卷积神经网络的交通标志识别方法

doi: 10.19818/j.cnki.1671-1637.2016.05.014
基金项目: 

高等学校学科创新引智计划项目 B14043

国家自然科学基金项目 51278058

国家自然科学基金项目 61302150

陕西省自然科学基金项目 2012JM8011

中央高校基本科研业务费专项资金项目 2013G1241111

中央高校基本科研业务费专项资金项目 2014G1321035

详细信息
    作者简介:

    刘占文(1983-), 女, 山东青岛人, 长安大学讲师, 工学博士, 从事显著性检测与模式识别研究

  • 中图分类号: U491.52

Traffic sign recognition method based on graphical model and convolutional neural network

More Information
    Author Bio:

    LIU Zhan-wen(1983-), female, lecturer, PhD, +86-29-82336596, zwliu@chd.edu.cn

  • 摘要: 为了提高交通标志识别的鲁棒性, 提出了一种基于图模型与卷积神经网络(CNN)的交通标志识别方法, 建立了一个面向应用的基于区域的卷积神经网络(R-CNN)交通标志识别系统。构造了基于超轮廓图(UCM)超像素区域的图模型, 有效利用自底向上的多级信息, 提出了一种基于图模型的层次显著性检测方法, 以提取交通标志感兴趣区域, 并利用卷积神经网络对感兴趣候选区进行特征提取与分类。检测结果表明: 针对限速标志, 基于UCM超像素区域的图模型比基于简单线性迭代聚类(SLIC)超像素的图模型更有利于获取上层显著度图的大尺度结构信息; 基于先验位置约束与局部特征(颜色与边界)的层次显著性模型有效地融合了局部区域的细节信息与结构信息, 检测结果更加准确, 检测目标更加完整、均匀, 查准率为0.65, 查全率为0.8, F指数为0.73, 均高于其他同类基于超像素的显著性检测算法; 基于具体检测任务的CNN预训练策略扩展了德国交通标志识别库(GTSRB)的样本集, 充分利用了CNN的海量学习能力, 更好地学习目标内部的局部精细特征, 提高了学习与识别能力, 总识别率为98.85%, 高于SVM分类器的95.73%。

     

  • 图  1  车辆目标

    Figure  1.  Vehicle targets

    图  2  层次合并规则

    Figure  2.  Level merger rules

    图  3  超像素预训练策略

    Figure  3.  Superpixel pre-training strategy

    图  4  CNN框架

    Figure  4.  CNN framework

    图  5  光线昏暗样本

    Figure  5.  Samples in dim light

    图  6  变形模糊样本

    Figure  6.  Distortional and fuzzy samples

    图  7  反光遮挡样本

    Figure  7.  Reflective and sheltered samples

    图  8  污损褪色样本

    Figure  8.  Stained and faded samples

    图  9  检测区域两侧的检测目标

    Figure  9.  Detecting targets on both sides of detecting region

    图  10  检测区域右侧的检测目标

    Figure  10.  Detecting targets on right side of detecting region

    图  11  检测区域中间的检测目标

    Figure  11.  Detecting targets in middle of detecting region

    图  12  超像素分割结果

    Figure  12.  Superpixel intersected results

    图  13  层次合并过程

    Figure  13.  Hierarchical combined procedure

    图  14  提取ROI

    Figure  14.  Extracting ROI

    图  15  检测结果1

    Figure  15.  Detection result 1

    图  16  检测结果2

    Figure  16.  Detection result 2

    图  17  检测结果3

    Figure  17.  Detection result 3

    图  18  PR曲线

    Figure  18.  PR curves

    图  19  评价指数

    Figure  19.  Evaluation indexes

  • [1] 隽志才, 曹鹏, 吴文静. 基于认知心理学的驾驶员交通标志视认性理论分析[J]. 中国安全科学学报, 2005, 15(8): 8-11. doi: 10.3969/j.issn.1003-3033.2005.08.002

    JUAN Zhi-cai, CAO Peng, WU Wen-jing. Study on driver traffic signs comprehension based on cognitive psychology[J]. China Safety Science Journal, 2005, 15(8): 8-11. (in Chinese). doi: 10.3969/j.issn.1003-3033.2005.08.002
    [2] LIU Han, LIU Ding, LI Qi. Real-time recognition of road traffic sign in moving scene image using genetic algorithm[C]//IEEE. Proceedings of the 4th World Congress on Intelligent Control and Automation. New York: IEEE, 2002: 1027-1030.
    [3] VÁZQUEZ-REINA A, LAFUENTE-ARROYO S, SIEGMANN P, et al. Traffic sign shape classification based on correlation techniques[C]//WSEAS. Proceedings of the 5th WSEASInternational Conference on Signal Processing, Computational Geometry and Artificial Vision. Stevens Point: WSEAS, 2005: 149-154.
    [4] LAFUENTE-ARROYO S, SALCEDO-SANZ S, MALDONADO-BASCÓN S, et al. A decision support system for the automatic management of keep-clear signs based on support vector machines and geographic information systems[J]. Expert Systems with Applications, 2010, 37(1): 767-773. doi: 10.1016/j.eswa.2009.05.102
    [5] OVERETT G, PETERSSON L. Large scale sign detection using HOG feature variants[C]//IEEE. 2011 IEEEIntelligent Vehicles Symposium(IV). New York: IEEE, 2011: 326-331.
    [6] WANG Gang-yi, REN Guang-hui, WU Zhi-lu, et al. A hierarchical method for traffic sign classification with support vector machines[C]//IEEE. The 2013International Joint Conference on Neural Networks. New York: IEEE, 2013: 1-6.
    [7] SALTI S, PETRELLI A, TOMBARI F, et al. A traffic sign detection pipeline based on interest region extraction[C]//IEEE. The 2013International Joint Conference on Neural Networks. New York: IEEE, 2013: 1-7.
    [8] XIE Yuan, LIU Li-feng, LI Cui-hua, et al. Unifying visual saliency with HOG feature learning for traffic sign detection[C]//IEEE. 2009IEEE Intelligent Vehicles Symposium. New York: IEEE, 2009: 24-29.
    [9] YAN Qiong, XU Li, SHI Jian-ping, et al. Hierarchical saliency detection[C]//IEEE. 2013IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2013: 1155-1162.
    [10] WEI Yi-chen, WEN Fang, ZHU Wang-jiang, et al. Geodesic saliency using background priors[C]//FITZGIBBON A, LAZEBNIK S, PERONA P, et al. 12th European Conference on Computer Vision. Berlin: Springer, 2012: 29-42.
    [11] PERAZZI F, KRÄHENBÜHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//IEEE. 2012 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2012: 733-740.
    [12] YANG Chuan, ZHANG Li-he, LU Hu-chuan, et al. Saliency detection via graph-based manifold ranking[C]//IEEE. 2013IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2013: 3166-3173.
    [13] YUAN Xue, GUO Jia-qi, HAO Xiao-li, et al. Traffic sign detection via graph-based ranking and segmentation algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(12): 1509-1521. doi: 10.1109/TSMC.2015.2427771
    [14] SERMANET P, CHINTALA S, LECUN Y. Convolutional neural networks applied to house numbers digit classification[C]//IEEE. 21st International Conference on Pattern Recognition. New York: IEEE, 2012: 3288-3291.
    [15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//PEREIRA F, BURGES C J C, BOTTOU L, et al. Advances in Neural Information Processing Systems 25. South Lake Tahoe: NIPS Foundation, 2012: 1097-1105.
    [16] SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]//IEEE. The 2011International Joint Conference on Neural Networks. New York: IEEE, 2011: 2809-2813.
    [17] WU Yi-hui, LIU Yu-long, LI Jian-min, et al. Traffic sign detection based on convolutional neural networks[C]//IEEE. The 2013 International Joint Conference on Neural Networks. New York: IEEE, 2013: 1-7.
    [18] JIA Yang-qing, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]//ACM. Proceedings of the 22nd ACM International Conference on Multimedia. New York: ACM, 2014: 675-678.
    [19] SZEGEDY C, LIU Wei, JIA Yang-qing, et al. Going deeper with convolutions[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
    [20] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//FLEET D, PAJDLA T, SCHIELE B, et al. 13th European Conference on Computer Vision. Berlin: Springer, 2014: 818-833.
    [21] BESAG J. Spatial interaction and the statisticalanalysis of lattice systems[J]. Journal of the Royal Statistical Society. Series B: Methodological, 1974, 36(2): 192-236.
    [22] LAFFERTY J, M CALLUM A, PEREIRA F. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//ACM. Proceedings of the 18th International Conference on Machine Learning. New York: ACM, 2001: 282-289.
    [23] YEDIDIA J S, FREEMAN W T, WEISS Y. Generalized belief propagation[C]//LEEN T K, DIETTERICH T G, TRESP V. Advances in Neural Information Processing Systems 13. Denver: NIPS Foundation, 2000: 689-695.
    [24] HOUBEN S, STALLKAMP J, SALMEN J, et al. Detection of traffic signs in real-world images: the German traffic sign detection benchmark[C]//IEEE. The 2013 International Joint Conference on Neural Networks. New York: IEEE, 2013: 1-8.
    [25] STSLLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark: a multi-class classification competition[C]//IEEE. The 2011International Joint Conference on Neural Networks. New York: IEEE, 2011: 1453-1460.
    [26] WEN Cheng-lu, LI J, LUO Huan, et al. Spatial-related traffic sign inspection for inventory purposes using mobile laser scanning data[J]. IEEE Transactions on Intelligent Transactions Systems, 2016, 17(1): 27-37.
    [27] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels[R]. Lausanne: École Polytechnique Féderale de Lausanne, 2010.
    [28] MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530-549.
    [29] CHENG Ming-ming, WARRELL J, LIN Wen-yan, et al. Efficient salient region detection with soft image abstraction[C]//IEEE. 2013 IEEE International Conference on Computer Vision. New York: IEEE, 2013: 1529-1536.
    [30] TONG Na, LU Hu-chuan, RUAN Xiang, et al. Salient object detection via bootstrap learning[C]//IEEE. 2015 IEEEConference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1884-1892.
    [31] QIN Yao, LU Hu-chuan, XU Yi-qun, et al. Saliency detection via cellular automata[C]//IEEE. 2015IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 110-119.
  • 加载中
图(19)
计量
  • 文章访问数:  2322
  • HTML全文浏览量:  135
  • PDF下载量:  2676
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-08
  • 刊出日期:  2016-10-25

目录

    /

    返回文章
    返回