Optimization of departure frequency for bus rapid transit with multi-type vehicles under time-dependent demand
-
摘要: 以公共交通网络中的单条快速公交线路为研究对象, 分析了快速公交车辆的发车间隔特征和沿线乘客出行需求的时间依赖特征; 考虑多类型公交车辆协同作业, 以所有乘客的累计等待时间最小和车辆的平均满载率最大为目标, 以最小、最大发车时间间隔和车辆运能的供需比为约束, 建立多类型快速公交车辆协同作业模式下的发车频率优化模型; 利用改进的非支配排序遗传算法对模型求解, 并应用兰州市快速公交数据进行实例分析。分析结果表明: 乘客累计等待时间分别取最大值、中间值和最小值时, 优化后的发车次数比实际发车次数分别降低22.9%、16.7%和8.4%, 对应的车辆平均满载率分别提高27.4%、15.1%和3.9%;与单一类型的快速公交车辆独立作业相比, 2种类型的快速公交车辆协同作业的平均发车次数增加7.9%, 平均乘客累计等待时间降低23.8%。可见, 根据乘客出行需求的时间依赖特征, 合理安排不同类型的快速公交车辆协同作业, 对发车频率进行优化, 能有效减少乘客等待时间, 提高公交车辆利用效率。Abstract: Taking the single bus rapid transit line in public transport network as the research object, the departure interval characteristics of bus rapid transit vehicles and time-dependent characteristics of passenger travel demand along the line were analyzed.With consideration of various types of buses working collaboratively, the minimum cumulative waiting time of all passengers and the maximum average load rate of vehicles were taken as the objectives, the minimum, maximum departure time intervals and the ratio of supply to demand for vehicle transport capacity were taken as the constraints, and an optimization model of departure frequency under the collaboratively working mode of bus rapid transit with multi-type vehicles was constructed.An improved non-dominated sorting genetic algorithm was used to solve the model.The bus rapid transit data in Lanzhou City was used to carry out case analysis.Analysis result shows that when the cumulative waiting times of passengers reach to the maximum, intermediate and minimum values, the optimized departure times reduce by 22.9%, 16.7% and 8.4%, respectively, compared to the actual departure times, and the corresponding average load rates of vehicles increase by 27.4%, 15.1% and 3.9%, respectively.Compared to the single type of bus rapid transit vehicle working independently, the average departure time of two types of bus rapid transit vehicles working collaboratively increases by 7.9%, and the average cumulative waiting time of passengers reduces by 23.8%.According to the time-dependent characteristics of passenger travel demand, the optimization of departure frequency with the reasonable arrangement for various types of bus rapid transit vehicles working collaboratively can reduce the waiting time of passengers effectively and increase the utilization efficiency of buses.
-
表 1 参数及其含义
Table 1. Parameters and their meanings
表 2 BRT站间距离和站间行驶时间
Table 2. Distances and travel times between BRT stations
表 3 各车站的客流数据
Table 3. Passenger flow data of each station
表 4 优化结果与实际运营数据的比较
Table 4. Comparison of optimized results and actual operation data
表 5 单一车型与2种车型的运营数据比较
Table 5. Comparison of operation data for single type and two types of vehicles
-
[1] 白子建. 基于智能优化算法的快速公交(BRT) 线网规划与发车频率优化研究[D]. 天津: 天津大学, 2007.BAI Zi-jian. A study on BRT network planning and optimal frequency based on intelligence optimization algorithms[D]. Tianjin: Tianjin University, 2007. (in Chinese). [2] NEWELL G F. Dispatching policies for a transportation route[J]. Transportation Science, 1971, 5 (1): 91-105. doi: 10.1287/trsc.5.1.91 [3] HAN A F, WILSON N H M. The allocation of buses in heavily utilized networks with overlapping routes[J]. Transportation Research Part B: Methodological, 1982, 16 (3): 221-232. doi: 10.1016/0191-2615(82)90025-X [4] LI Yan-hong, XU Wang-tu, HE Shi-wei. Expected value model for optimizing the multiple bus headways[J]. Applied Mathematics and Computation, 2013, 219 (11): 5849-5861. doi: 10.1016/j.amc.2012.11.098 [5] VERBAS IÖ, MAHMASSANI H S. Optimal allocation of service frequencies over transit network routes and time periods: formulation, solution, and implementation using bus route patterns[J]. Transportation Research Record, 2013 (2334): 50-59. [6] HADAS Y, SHNAIDERMAN M. Public-transit frequency setting using minimum-cost approach with stochastic demand and travel time[J]. Transportation Research Part B: Methodological, 2012, 46 (8): 1068-1084. doi: 10.1016/j.trb.2012.02.010 [7] SIVAKUMARAN K, LI Yu-wei, CASSIDY M J, et al. Cost-saving properties of schedule coordination in a simple trunk-and-feeder transit system[J]. Transportation Research Part A: Policy and Practice, 2012, 46 (1): 131-139. doi: 10.1016/j.tra.2011.09.013 [8] MARTÍNEZ H, MAUTTONE A, URQUHART M E. Frequency optimization in public transportation systems: formulation and metaheuristic approach[J]. European Journal of Operational Research, 2014, 236 (1): 27-36. doi: 10.1016/j.ejor.2013.11.007 [9] VERBAS IÖ, FREI C, MAHMASSANI H S, et al. Stretching resources: sensitivity of optimal bus frequency allocation to stop-level demand elasticities[J]. Public Transport, 2015, 7 (1): 1-20. doi: 10.1007/s12469-013-0084-6 [10] BERREBI S J, WATKINS K E, LAVAL J A. A real-time bus dispatching policy to minimize passenger wait on a high frequency route[J]. Transportation Research Part B: Methodological, 2015, 81: 377-389. doi: 10.1016/j.trb.2015.05.012 [11] 孙杨, 宋瑞, 何世伟. 随机需求下公交时刻表设计的鲁棒性优化[J]. 系统工程理论与实践, 2011, 31 (5): 986-992. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201105028.htmSUN Yang, SONG Rui, HE Shi-wei. Robust optimization for transit timetable design under stochastic demands[J]. Systems Engineering-Theory and Practice, 2011, 31 (5): 986-992. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201105028.htm [12] 黄正锋, 任刚. 不确定需求下的公交线路发车频率优化[J]. 哈尔滨工业大学学报, 2012, 44 (12): 135-139. doi: 10.11918/j.issn.0367-6234.2012.12.024HUANG Zheng-feng, REN Gang. Optimizing bus frequencies under uncertain demand[J]. Journal of Harbin Institute of Technology, 2012, 44 (12): 135-139. (in Chinese). doi: 10.11918/j.issn.0367-6234.2012.12.024 [13] 于滨, 邹文倩, 邵光成, 等. 公交线路发车频率优化模型及求解方法[J]. 哈尔滨工业大学学报, 2009, 41 (4): 250-252. doi: 10.3321/j.issn:0367-6234.2009.04.059YU Bin, ZOU Wen-qian, SHAO Guang-cheng, et al. Modeling and solutions for optimizing bus frequencies[J]. Journal of Harbin Institute of Technology, 2009, 41 (4): 250-252. (in Chinese). doi: 10.3321/j.issn:0367-6234.2009.04.059 [14] 于滨, 杨忠振, 程春田, 等. 公交线路发车频率优化的双层规划模型及其解法[J]. 吉林大学学报: 工学版, 2006, 36 (5): 664-668. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200605005.htmYU Bin, YANG Zhong-zhen, CHENG Chun-tian, et al. Bilevel programming model for optimizing bus frequencies and its algorithm[J]. Journal of Jilin University: Engineering and Technology Edition, 2006, 36 (5): 664-668. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200605005.htm [15] WU Jia-qing, SONG Rui, WANG You-an, et al. Modeling the coordinated operation between bus rapid transit and bus[J]. Mathematical Problems in Engineering, 2015, 2015: 1-7. [16] 芦方强, 陈学武, 陈素平. 基于成本分析的快速公交发车频率优化方法[J]. 东南大学学报: 自然科学版, 2009, 39 (4): 849-853. doi: 10.3969/j.issn.1001-0505.2009.04.039LU Fang-qiang, CHEN Xue-wu, CHEN Su-ping. Frequency optimization of bus rapid transit based on cost analysis[J]. Journal of Southeast University: Natural Science Edition, 2009, 39 (4): 849-853. (in Chinese). doi: 10.3969/j.issn.1001-0505.2009.04.039 [17] 孙传姣, 周伟, 王元庆. 快速公交车辆调度组合及发车间隔优化研究[J]. 交通运输系统工程与信息, 2008, 8 (5): 61-67. doi: 10.3969/j.issn.1009-6744.2008.05.010SUN Chuan-jiao, ZHOU Wei, WANG Yuan-qing. Scheduling combination and headway optimization of bus rapid transit[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8 (5): 61-67. (in Chinese). doi: 10.3969/j.issn.1009-6744.2008.05.010 [18] FURTH P G, MULLER T H J. Service reliability and optimal running time schedules[J]. Transportation Research Record, 2007 (2034): 55-61. [19] BARRENA E, CANCA D, COELHO L C, et al. Single-line rail rapid transit timetabling under dynamic passenger demand[J]. Transportation Research Part B: Methodological, 2014, 70: 134-150. doi: 10.1016/j.trb.2014.08.013 [20] CANCA D, ALGABA E, BARRENA E, et al. Railway rapid transit timetables with variable and elastic demand[J]. Procedia-Social and Behavioral Sciences, 2014, 111: 538-548. doi: 10.1016/j.sbspro.2014.01.087 [21] FAMOYE F. Continuousunivariate distributions, volume 1[J]. Technometrics, 1995, 37 (4): 466-466. [22] 席裕庚, 柴天佑, 恽为民. 遗传算法综述[J]. 控制理论与应用, 1996, 13 (6): 697-708. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY606.000.htmXI Yu-geng, CHAI Tian-you, YUN Wei-min. Survey on genetic algorithm[J]. Control Theory and Applications, 1996, 13 (6): 697-708. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY606.000.htm [23] LIN C H, LIN P L. Improving the non-dominated sorting genetic algorithm using a gene-therapy method for multiobjective optimization[J]. Journal of Computational Science, 2014, 5 (2): 170-183. [24] NIU Hui-min, ZHOU Xue-song. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 212-230. [25] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEETransactions on Evolutionary Computation, 2002, 6 (2): 182-197.