留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于裂缝宽度的部分预应力混凝土梁设计方法

杜进生 刘玲 冯威 许冰

杜进生, 刘玲, 冯威, 许冰. 基于裂缝宽度的部分预应力混凝土梁设计方法[J]. 交通运输工程学报, 2018, 18(2): 23-30. doi: 10.19818/j.cnki.1671-1637.2018.02.003
引用本文: 杜进生, 刘玲, 冯威, 许冰. 基于裂缝宽度的部分预应力混凝土梁设计方法[J]. 交通运输工程学报, 2018, 18(2): 23-30. doi: 10.19818/j.cnki.1671-1637.2018.02.003
DU Jin-sheng, LIU Ling, FENG Wei, XU Bing. Design method of partially prestressed concrete beam based on crack width[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 23-30. doi: 10.19818/j.cnki.1671-1637.2018.02.003
Citation: DU Jin-sheng, LIU Ling, FENG Wei, XU Bing. Design method of partially prestressed concrete beam based on crack width[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 23-30. doi: 10.19818/j.cnki.1671-1637.2018.02.003

基于裂缝宽度的部分预应力混凝土梁设计方法

doi: 10.19818/j.cnki.1671-1637.2018.02.003
基金项目: 

陕西省交通科技项目 13-19K

宁波市科技计划项目 2015C110020

详细信息
    作者简介:

    杜进生(1966-), 男, 甘肃靖远人, 北京交通大学教授, 工学博士, 从事部分预应力混凝土桥梁受力性能研究

  • 中图分类号: U448.35

Design method of partially prestressed concrete beam based on crack width

More Information
Article Text (Baidu Translation)
  • 摘要: 为了简化部分预应力混凝土梁的设计过程, 减少设计试算的次数, 缩小预应力筋用量的取值范围, 提出了基于裂缝宽度的部分预应力混凝土梁设计方法; 从正常使用状态的裂缝宽度出发, 根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62—2004) (简称《公路规范》) 中对裂缝宽度的规定, 通过最大裂缝宽度求解受拉区普通钢筋的应力, 并建立关于开裂截面中性轴高度的一元三次方程; 根据预应力筋的有效应变要求, 结合《公路规范》中最小配筋率的规定, 得到了预应力筋用量的上、下限; 给出了设计方法的主要步骤和具体验算过程, 并设计了1根T形截面试验梁, 以验证设计方法的合理性。研究结果表明: 验算梁的抗弯承载力及预应力筋用量的上、下限满足规范要求; 试验梁的荷载与挠度基本呈现三折线关系, 在外荷载为50.0kN时, 试验梁跨中出现裂缝, 外荷载为128.5kN时, 试验梁受拉普通钢筋屈服, 外荷载为157.8kN时, 试验梁跨中混凝土压碎破坏, 试验梁总体呈延性破坏特征, 满足承载性能要求; 在受拉普通钢筋屈服前, 试验梁实测最大裂缝宽度为0.18mm, 未超过预估的最大裂缝宽度0.20mm, 满足正常使用要求。可见, 提出的设计方法合理、可行, 能够简化部分预应力混凝土梁的设计过程。

     

  • 图  1  不同钢筋直径下的σs-ρ曲线

    Figure  1.  Relationship curves of σs-ρ under different reinforcement diameters

    图  2  不同最大裂缝宽度下的σs-ρ曲线

    Figure  2.  Relationship curves of σs-ρ under different maximum crack widths

    图  3  T形截面应变与应力

    Figure  3.  Strains and stresses of T-shaped section

    图  4  T形截面尺寸(单位: mm)

    Figure  4.  Dimensions of T-shaped section (unit: mm)

    图  5  不同外弯矩下εp-σs关系曲线

    Figure  5.  Relationship curves ofεp-σs under different external bending moments

    图  6  试验梁尺寸(单位: mm)

    Figure  6.  Dimensios of test girder (unit: mm)

    图  7  试验梁裂缝分布

    Figure  7.  Distribution of crack of test girder

    图  8  试验梁破坏形态

    Figure  8.  Failure mode of test girder

    图  9  试验梁荷载-跨中挠度曲线

    Figure  9.  Load-midspan deflection curve of test girder

  • [1] AU F T K, SU R K L, TSO K, et al. Behaviour of partially prestressed beams with external tendons[J]. Magazine of Concrete Research, 2008, 60 (6): 455-467. doi: 10.1680/macr.2008.60.6.455
    [2] DU J S, AU F T K, CHAN E K H, et al. Deflection of unbonded partially prestressed concrete continuous beams[J]. Engineering Structures, 2016, 118: 89-96. doi: 10.1016/j.engstruct.2016.03.040
    [3] NAAMAN A E. Partially prestressed concrete: review and recommendations[J]. PCI Journal, 1985, 30 (6): 30-71.
    [4] 张耀庭, 张江, 杨力. 预应力度对预应力混凝土框架结构抗震性能影响研究[J]. 工程力学, 2017, 34 (2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201702017.htm

    ZHANG Yao-ting, ZHANG Jiang, YANG Li. Research on the effects of prestressing ratio on the seismic capacity of prestressed concrete frame structures[J]. Engineering Mechanics, 2017, 34 (2): 129-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201702017.htm
    [5] Joint ACI-ASCE Committee 423. State-of-the-art report on partially prestressed concrete (ACI 423.5R-99)[R]. Farmington Hills: American Concrete Institute, 2000.
    [6] RAKA I G P, TAVIO, ASTAWA M D. State-of-the-art report on partially-prestressed concrete earthquake-resistant building structures for highly-seismic region[J]. Procedia Engineering, 2014, 95: 43-53. doi: 10.1016/j.proeng.2014.12.164
    [7] MOAWARD M, MAHMOND A, EL-KARMOTY H, et al. Behavior of corroded bonded partially prestressed concrete beams[J]. HBRC Journal, 2018, 14 (1): 9-21. doi: 10.1016/j.hbrcj.2016.01.003
    [8] CHERN J C, YOU C M, BAZANT Z P. Deformation of progressively cracking partially prestressed concrete beams[J]. PCI Journal, 1992, 37 (1): 74-84. doi: 10.15554/pcij.01011992.74.85
    [9] SCHOLZ H. Simple deflection and cracking rules for partially prestressed members[J]. ACI Structural Journal, 1991, 88 (2): 199-203.
    [10] AU F T K, DU J S. Partially prestressed concrete[J]. Progress in Structure Engineering and Materials, 2004, 2 (6): 127-135.
    [11] NAAMAN A E, SIRIAKSOM A. Serviceability based design of partially prestressed beams, part 2—computerized design[J]. PCI Journal, 1979, 24 (2): 68-89. doi: 10.15554/pcij.03011979.68.89
    [12] KARAYANNIS C G, CHALIORIS C E. Design of partially prestressed concrete beams based on the cracking control provisions[J]. Engineering Structures, 2013, 48: 402-416. doi: 10.1016/j.engstruct.2012.09.020
    [13] ABELES P W. Design of partially prestressed concrete beams[J]. ACI Journal, 1967, 64 (10): 669-677.
    [14] 孙宝俊, 郑文忠, 吕志涛. 部分预应力混凝土结构裂缝控制设计建议[J]. 中国公路学报, 1995, 8 (2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL502.009.htm

    SUN Bao-jun, ZHENG Wen-zhong, LU Zhi-tao. Crackcontrol design recommended for partially prestressed concrete structures[J]. China Journal of Highway and Transport, 1995, 8 (2): 61-64. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL502.009.htm
    [15] 王勇强, 侯建国. 部分预应力混凝土梁考虑裂缝闭合性能的裂缝控制设计方法的研究[J]. 武汉大学学报: 工学版, 2008, 41 (增): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD2008S1002.htm

    WANG Yong-qiang, HOU Jian-guo. Research on design methods of crack-controlling of partially prestressed concreted beams considering crack-closure[J]. Engineering Journal of Wuhan University, 2008, 41 (S): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD2008S1002.htm
    [16] 张昊宇, 郑文忠. 对用名义拉应力控制预应力混凝土受弯构件裂缝宽度方法的2点改进[J]. 铁道科学与工程学报, 2006, 3 (6): 25-30. doi: 10.3969/j.issn.1672-7029.2006.06.005

    ZHANG Hao-yu, ZHENG Wen-zhong. Two pieces of improvement on the crack width control method using nominal tensile stress for prestressed concrete flexural member[J]. Journal of Railway Science and Engineering, 2006, 3 (6): 25-30. (in Chinese). doi: 10.3969/j.issn.1672-7029.2006.06.005
    [17] 李子青, 万振江. 部分预应力混凝土桥梁设计方法的探讨[J]. 西安公路交通大学学报, 1998, 18 (4): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL8S2.005.htm

    LI Zi-qing, WAN Zhen-jiang. Study on design method for partially prestressed concrete bridge[J]. Journal of Xi'an Highway University, 1998, 18 (4): 147-151. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL8S2.005.htm
    [18] 李忠诚, 李唐宁. 部分预应力(PPC) 梁裂缝控制计算的探讨[J]. 建筑结构, 2001, 31 (11): 24-28, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200111006.htm

    LI Zhong-cheng, LI Tang-ning. Discussion on calculation of PPC beam crack controlling[J]. Building Structure, 2001, 31 (11): 24-28, 53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200111006.htm
    [19] SHAHAWI M E, BATCHELOR B D. Design methods for partially prestressed concrete—a review[J]. Canadian Journal of Civil Engineering, 1987, 14 (2): 269-277. doi: 10.1139/l87-039
    [20] 蓝宗建, 温峰. 在使用荷载下出现裂缝的部分预应力砼梁裂缝宽度的计算[J]. 建筑结构学报, 1993, 14 (5): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB199305002.htm

    LAN Zong-jian, WEN Feng. Calculation of crack width in partially prestressed concrete beams under service load[J]. Journal of Building Structures, 1993, 14 (5): 19-27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB199305002.htm
    [21] 于琦, 孟少平. 部分预应力混凝土受弯构件裂缝宽度计算方法探讨[J]. 建筑结构, 2009, 39 (3): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200903012.htm

    YU Qi, MENG Shao-ping. Discussion on the method for calculating crack width of partial prestressed concrete beams[J]. Building Structure, 2009, 39 (3): 31-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200903012.htm
    [22] 吴大宏, 赵人达. 基于神经网络的部分预应力混凝土梁荷载-裂缝模型研究[J]. 西南交通大学学报, 2002, 37 (3): 231-235. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200203001.htm

    WU Da-hong, ZHAO Ren-da. The load and crack width model for partially prestressed concrete beams based on neural network[J]. Journal of Southwest Jiaotong University, 2002, 37 (3): 231-235. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200203001.htm
    [23] 杜进生, 刘西拉. 无粘结部分预应力混凝土梁的挠度、裂缝宽度计算[J]. 中国公路学报, 2000, 13 (4): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200004015.htm

    DU Jin-sheng, LIU Xi-la. Calculation of deflection and crack width in unbounded partially prestressed concrete beams[J]. China Journal of Highway and Transport, 2000, 13 (4): 70-73. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200004015.htm
    [24] CHOWDHURY S H, LOO Y C. A new formula for prediction of crack widths in reinforced and partially prestressed concrete beams[J]. Advances in Structural Engineering, 2001, 4 (2): 101-110.
    [25] 王军文, 梁志广, 李建中. 部分预应力混凝土梁的应力和变形[J]. 工程力学, 2002, 19 (5): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200205019.htm

    WANG Jun-wen, LIANG Zhi-guang, LI Jian-zhong. The stress and deformation of partially prestressed concrete beams[J]. Engineering Mechanics, 2002, 19 (5): 108-113. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200205019.htm
  • 加载中
图(9)
计量
  • 文章访问数:  1042
  • HTML全文浏览量:  297
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-12
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回