留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型机场进场航空器联合调度模型

姜雨 刘振宇 胡志韬 吴薇薇 王喆

姜雨, 刘振宇, 胡志韬, 吴薇薇, 王喆. 大型机场进场航空器联合调度模型[J]. 交通运输工程学报, 2022, 22(1): 205-215. doi: 10.19818/j.cnki.1671-1637.2022.01.017
引用本文: 姜雨, 刘振宇, 胡志韬, 吴薇薇, 王喆. 大型机场进场航空器联合调度模型[J]. 交通运输工程学报, 2022, 22(1): 205-215. doi: 10.19818/j.cnki.1671-1637.2022.01.017
JIANG Yu, LIU Zhen-yu, HU Zhi-tao, WU Wei-wei, WANG Zhe. Coordinated scheduling model of arriving aircraft at large airport[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 205-215. doi: 10.19818/j.cnki.1671-1637.2022.01.017
Citation: JIANG Yu, LIU Zhen-yu, HU Zhi-tao, WU Wei-wei, WANG Zhe. Coordinated scheduling model of arriving aircraft at large airport[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 205-215. doi: 10.19818/j.cnki.1671-1637.2022.01.017

大型机场进场航空器联合调度模型

doi: 10.19818/j.cnki.1671-1637.2022.01.017
基金项目: 

国家自然科学基金项目 U1933118

国家自然科学基金项目 U2033205

详细信息
    作者简介:

    姜雨(1975-), 女, 山东烟台人, 南京航空航天大学副教授, 工学博士, 从事机场场面运行优化研究。

  • 中图分类号: V355.1

Coordinated scheduling model of arriving aircraft at large airport

Funds: 

National Natural Science Foundation of China U1933118

National Natural Science Foundation of China U2033205

More Information
Article Text (Baidu Translation)
  • 摘要: 为减少进场航空器总延误与总滑行时间,研究了大型机场进场航空器联合调度问题;分别以跑道排序时间跨度和总延误加权和最小、被分配至远机位航班数量最少、进场航空器总滑行时间最短为目标函数,构建了跑道、停机位、滑行道三大系统的正向联合调度模型;在此基础上引入停机位再调整模型,通过调整额外滑行时间较大的航空器的停机位指派方案对滑行道调度进行反向优化;设计了一种改进型基因编码的遗传算法以避免非可行解的产生,提高求解效率。仿真结果表明:对比先到先服务策略,改进型遗传算法的进场航空器跑道排序时间减少了20 s,总延误从254 350 s降至199 760 s,减少了21%;对比蚁群算法,改进型遗传算法的总延误减少了20 060 s,降低了9%,且迭代曲线更平稳;改进遗传算法迭代12次时即能为进场航空器全部分配至近机位,18架进场航空器的总滑行时间从4 575 s降至4 145 s,降低了9%,且滑行过程中仅发生3次冲突;11架航空器均选择最短路滑行,仅3架航空器的额外滑行时间超过40 s;经停机位调整后,总额外滑行时间减少58 s,降低了27%。可见,进场航空器联合调度模型能提高大型机场运行效率,为场面资源管理提供决策参考。

     

  • 图  1  大型机场进场航空器联合调度流程

    Figure  1.  Flow of coordinated scheduling for arriving aircraft at large airport

    图  2  改进遗传算法流程

    Figure  2.  Flow of improved genetic algorithm

    图  3  某大型机场构型

    Figure  3.  Structure of a large airport

    图  4  不同变异概率跑道排序目标函数进化曲线

    Figure  4.  Evolution curves of runway sequencing objective function under different mutation probabilities

    图  5  不同交叉概率跑道排序目标函数进化曲线

    Figure  5.  Evolution curves of runway sequencing objective function under different crossing probabilities

    图  6  进场航空器总延误对比

    Figure  6.  Comparison of total delays of arriving aircrafts

    图  7  改进GA与ACO迭代曲线对比

    Figure  7.  Comparison of iteration curves of improved GA and ACO

    图  8  进场航空器滑行道调度进化曲线

    Figure  8.  Evolution curves of taxiway scheduling of arriving aircrafts

    图  9  航空器滑行冲突解脱

    Figure  9.  Aircraft taxi conflict reliefs

    图  10  各航空器实际滑行时间与理论最短滑行时间

    Figure  10.  Actual taxi times and theoretical shortest taxi times of each aircraft

    图  11  额外滑行时间对比

    Figure  11.  Comparison of extra taxiing time

    表  1  航班数据信息

    Table  1.   Flight data information

    航空器 进/离场 预计时间 过站时间/min 机型类别
    F1 离场 18:00 60 中型
    F14 进场 18:10 75 大型
    下载: 导出CSV

    表  2  停机位信息

    Table  2.   Gate information

    停机位 停机坪 类型 占用航空器
    g1 G3 小型 F1
    g6 G4 大型 F9
    g13 G5 中型
    下载: 导出CSV

    表  3  跑道排序仿真结果对比

    Table  3.   Comparison of runway sequencing simulation results

    算法 排序时间跨度/s 总延误/s
    FCFS 3 550 254 350
    改进GA 3 530 199 760
    ACO 3 515 219 820
    下载: 导出CSV

    表  4  进场航空器停机位指派结果

    Table  4.   Gate assignment results of arriving aircrafts

    航空器 停机位 航空器 停机位 航空器 停机位
    F6 g13 F20 g1 F34 g11
    F10 g4 F22 g5 F35 g3
    F14 g27 F27 g21 F39 g7
    F15 g17 F28 g18 F40 g23
    F16 g9 F29 g6 F41 g10
    F19 g2 F33 g22 F42 g8
    下载: 导出CSV

    表  5  调整后停机位指派结果

    Table  5.   Gate assignment results after adjustment

    航空器 停机位 航空器 停机位 航空器 停机位
    F6 g13 F20 g1 F34 g11
    F10 g4 F22 g5 F35 g3
    F14 g23 F27 g21 F39 g7
    F15 g17 F28 g6 F40 g19
    F16 g9 F29 g18 F41 g10
    F19 g2 F33 g22 F42 g8
    下载: 导出CSV
  • [1] MAHARJAN B, MATIS T I. Multi-commodity flow network model of the flight gate assignment problem[J]. Computers and Industrial Engineering, 2012, 63(4): 1135-1144. doi: 10.1016/j.cie.2012.06.020
    [2] DIEPEN G, AKKER J M, HOOGEVEEN J A, et al. Finding a robust assignment of flights to gates at Amsterdam Airport Schiphol[J]. Journal of Scheduling, 2012, 15(6): 703-715. doi: 10.1007/s10951-012-0292-y
    [3] DORNDORF U, JAEHN F, PESCH E. Flight gate assignment and recovery strategies with stochastic arrival and departure times[J]. OR Spectrum, 2017, 39(1): 65-93. doi: 10.1007/s00291-016-0443-1
    [4] CASTAING J, MUKHERJEE I, COHN A, et al. Reducing airport gate blockage in passenger aviation: models and analysis[J]. Computers and Operations Research, 2016, 65: 189-199. doi: 10.1016/j.cor.2014.02.011
    [5] KIM S H, FERON E. Robust gate assignment against gate conflicts[J]. Journal of Air Transportation, 2017, 25(3): 87-94. doi: 10.2514/1.D0067
    [6] AOUN O, EL AFIA A. Using Markov decision processes to solve stochastic gate assignment problem[C]//IEEE. 2nd IEEE International Conference on Logistics Operations Management. New York: IEEE, 2014: 42-47.
    [7] DELL'ORCO M, MARINELLI M, ALTIERI M G. Solving the gate assignment problem through the fuzzy bee colony optimization[J]. Transportation Research Part C: Emerging Technologies, 2017, 80: 424-438. doi: 10.1016/j.trc.2017.03.019
    [8] DENG Wu, ZHAO Hui-min, YANG Xin-hua, et al. Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment[J]. Applied Soft Computing, 2017, 59: 288-302. doi: 10.1016/j.asoc.2017.06.004
    [9] DENG Wu, SUN Meng, ZHAO Hui-min, et al. Study on an airport gate assignment method based on improved ACO algorithm[J]. Kybernetes, 2018, 47(1): 20-43. doi: 10.1108/K-08-2017-0279
    [10] YU Sheng-peng, CAO Xian-bin, ZHANG Jun. A real-time schedule method for Aircraft Landing Scheduling problem based on Cellular Automation[J]. Applied Soft Computing, 2011, 11(4): 3485-3493. doi: 10.1016/j.asoc.2011.01.022
    [11] 张军峰, 郑志祥, 葛腾腾. 基于复合分派规则的进场航班排序方法[J]. 交通运输工程学报, 2017, 17(3): 141-150. doi: 10.3969/j.issn.1671-1637.2017.03.015

    ZHANG Jun-feng, ZHENG Zhi-xiang, GE Teng-teng. Sequencing approach of arrival aircrafts based on composite dispatching rules[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 141-150. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.03.015
    [12] 王世豪, 杨红雨, 李玉贞, 等. 基于精英存档自适应微分进化算法的多跑道独立进近排序[J]. 工程科学与技术, 2017, 49(3): 153-161. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201703020.htm

    WANG Shi-hao, YANG Hong-yu, LI Yu-zhen, et al. Multi-runways independent approach scheduling using self-adaptive differential evolution algorithm with elite archive[J]. Advanced Engineering Sciences, 2017, 49(3): 153-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201703020.htm
    [13] HANCERLIOGULLARI G, RABADI G, AL-SALEM A H, et al. Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem[J]. Journal of Air Transport Management, 2013, 32: 39-48. doi: 10.1016/j.jairtraman.2013.06.001
    [14] BALL M O, BERARDINO F, HANSEN M. The use of auctions for allocating airport access rights[J]. Transportation Research Part A: Policy and Practice, 2018, 114: 186-202. doi: 10.1016/j.tra.2017.09.026
    [15] LANDRY S J, CHEN X W, NOF S Y. A decision support methodology for dynamic taxiway and runway conflict prevention[J]. Decision Support Systems, 2013, 55(1): 165-174. doi: 10.1016/j.dss.2013.01.016
    [16] 冯程, 胡明华, 丛玮. 基于滚动时域算法的航班滑行路径优化模型[J]. 航空计算技术, 2014, 44(4): 80-85. doi: 10.3969/j.issn.1671-654X.2014.04.021

    FENG Cheng, HU Ming-hua, CONG Wei. Optimization model of taxiway routing based on receding horizon[J]. Aeronautical Computing Technique, 2014, 44(4): 80-85. (in Chinese) doi: 10.3969/j.issn.1671-654X.2014.04.021
    [17] LUO Xiao, TANG Yong, WU Hong-gang, et al. Real-time adjustment strategy for conflict-free taxiing route of A-SMGCS aircraft on airport surface[C]//IEEE. International Conference on Mechatronics and Automation (ICMA). New York: IEEE, 2015: 929-934.
    [18] ZHANG Tian-ci, DING Meng, WANG Bang-feng, et al. Conflict-free time-based trajectory planning for aircraft taxi automation with refined taxiway modeling[J]. Journal of Advanced Transportation, 2016, 50(3): 326-347. doi: 10.1002/atr.1324
    [19] ZHANG Tian-ci, DING Meng, ZUO Hong-fu. Improved approach for time-based taxi trajectory planning towards conflict-free, efficient and fluent airport ground movement[J]. IET Intelligent Transport Systems, 2018, 12(10): 1360-1368. doi: 10.1049/iet-its.2018.5193
    [20] BADRINATH S, BALAKRISHNAN H. Control of a non-stationary tandem queue model of the airport surface[C]//IEEE. 2017 American Control Conference (ACC). New York: IEEE. 2017: 655-661.
    [21] WEISZER M, CHEN J, LOCATELLI G. An integrated optimization approach to airport ground operations to foster sustainability in the aviation sector[J]. Applied Energy, 2015, 157(1): 567-582.
    [22] BROWNLEE A E I, WEISZER M, CHEN J, et al. A fuzzy approach to addressing uncertainty in Airport Ground Movement optimization[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 150-175. doi: 10.1016/j.trc.2018.04.020
    [23] CHEN J, WEISZER M, ZAREIAN E, et al. Multi-objective fuzzy rule-based prediction and uncertainty quantification of aircraft taxi time[C]//IEEE. 20th International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 1-5.
    [24] GUÉPET J, BRIANT O, GAYON J P, et al. The aircraft ground routing problem: Analysis of industry punctuality indicators in a sustainable perspective[J]. European Journal of Operational Research, 2016, 248(3): 827-839. doi: 10.1016/j.ejor.2015.08.041
    [25] BENLIC U, BROWNLEE A E I, BURKE E K. Heuristic search for the coupled runway sequencing and taxiway routing problem[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 333-355. doi: 10.1016/j.trc.2016.08.004
    [26] YU C H, LAU H Y K. Integrated optimization of airport taxiway and runway scheduling[J]. Journal of Automation and Control Engineering, 2014, 2(4): 338-342. doi: 10.12720/joace.2.4.338-342
    [27] YU Chu-hang, ZHANG Dong, LAU H Y K. A heuristic approach for solving an integrated gate reassignment and taxi scheduling problem[J]. Journal of Air Transport Management, 2017, 62: 189-196. doi: 10.1016/j.jairtraman.2017.04.006
    [28] GUÉPET J, BRIANT O, GAYON J P, et al. Integration of aircraft ground movements and runway operations[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 104: 131-149. doi: 10.1016/j.tre.2017.05.002
    [29] MURÇA M C R. A robust optimization approach for airport departure metering under uncertain taxi-out time predictions[J]. Aerospace Science and Technology, 2017, 68: 269-277. doi: 10.1016/j.ast.2017.05.020
    [30] SIMAIAKIS I, KHADILKAR H, BALAKRISHNAN H, et al. Demonstration of reduced airport congestion through pushback rate control[J]. Transportation Research Part A: Policy and Practice, 2014, 66: 251-267. doi: 10.1016/j.tra.2014.05.014
    [31] 余朝军, 江驹, 徐海燕, 等. 基于改进遗传算法的航班-登机口分配多目标优化[J]. 交通运输工程学报, 2020, 20(2): 121-130. doi: 10.19818/j.cnki.1671-1637.2020.02.010

    YU Chao-jun, JIANG Ju, XU Hai-yan, et al. Multi-objective optimization of flight-gate assignment based on improved genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 121-130. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.010
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  1806
  • HTML全文浏览量:  499
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回