留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强腐后Q345钢力学性能退化试验

乔文靖 杨帆 胡启涵 张浩 焦雪峰

乔文靖, 杨帆, 胡启涵, 张浩, 焦雪峰. 强腐后Q345钢力学性能退化试验[J]. 交通运输工程学报, 2022, 22(5): 231-246. doi: 10.19818/j.cnki.1671-1637.2022.05.014
引用本文: 乔文靖, 杨帆, 胡启涵, 张浩, 焦雪峰. 强腐后Q345钢力学性能退化试验[J]. 交通运输工程学报, 2022, 22(5): 231-246. doi: 10.19818/j.cnki.1671-1637.2022.05.014
QIAO Wen-jing, YANG Fan, HU Qi-han, ZHANG Hao, JIAO Xue-feng. Experiment on mechanical property degradation of Q345 steel after strong corrosion[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 231-246. doi: 10.19818/j.cnki.1671-1637.2022.05.014
Citation: QIAO Wen-jing, YANG Fan, HU Qi-han, ZHANG Hao, JIAO Xue-feng. Experiment on mechanical property degradation of Q345 steel after strong corrosion[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 231-246. doi: 10.19818/j.cnki.1671-1637.2022.05.014

强腐后Q345钢力学性能退化试验

doi: 10.19818/j.cnki.1671-1637.2022.05.014
基金项目: 

国家重点研发计划 2018YFD1100701

陕西省自然科学基金项目 2021JM-434

陕西省自然科学基金项目 2021JQ-648

西安市未央区科技计划项目 202019

详细信息
    作者简介:

    乔文靖(1981-),女,河北衡水人,西安工业大学副教授,工学博士,从事钢板组合梁力学性能研究

  • 中图分类号: U448.36

Experiment on mechanical property degradation of Q345 steel after strong corrosion

Funds: 

National Key Research and Development Program of China 2018YFD1100701

Natural Science Foundation of Shaanxi Province 2021JM-434

Natural Science Foundation of Shaanxi Province 2021JQ-648

Science and Technology Planning Project of Weiyang District in Xi'an City 202019

More Information
  • 摘要: 系统研究了强腐后Q345钢表面形貌和腐蚀时间对其力学性能退化的影响;采用浓度36%工业盐酸在室温环境下快速腐蚀的方法,设计了腐蚀时间分别为0、1、2、4、8、12、24、48、72 h的9组钢试件;采用三维非接触激光扫描仪和扫描电镜扫描腐蚀钢,测量了最大蚀坑宽度、高度和腐蚀试件厚度,计算了最大蚀坑影响系数;开展了拉伸试验,结合扫描形貌与微观组织形态解释了强腐后Q345钢的力学性能退化机理;建立了浓度36%工业盐酸在室温环境强腐后Q345钢的腐蚀动力学曲线和本构关系模型,揭示了强腐后Q345钢的力学性能退化规律。研究结果表明:随着腐蚀时间的增加,Q345钢的腐蚀动力学曲线展示了腐蚀率的变化规律;腐蚀时间在1 h以内,最大蚀坑影响系数增大最为明显,钢的名义屈服强度、名义抗拉强度、名义弹性模量和伸长率退化较大,分别达到未腐蚀钢的3.00%、0.69%、1.99%和4.88%;当腐蚀时间超过12 h,最大蚀坑影响系数增加缓慢,钢的名义屈服强度、名义抗拉强度、名义弹性模量和伸长率退化较为缓慢,分别达到未腐蚀钢的7.58%、4.02%、10.27%和26.64%;随着最大蚀坑影响系数和腐蚀时间的增加,屈强比变化较小;在腐蚀试件的应力-应变本构关系曲线中,随着腐蚀时间的增加,钢材的屈服平台逐渐缩短甚至消失,钢材由延性破坏转变为脆性破坏。

     

  • 图  1  试件尺寸

    Figure  1.  Dimensions of specimen

    图  2  浓度36%工业盐酸腐蚀钢试件

    Figure  2.  Steel specimens corroded under industrial hydrochloric acid with concentration of 36%

    图  3  拉伸试验

    Figure  3.  Tensile test

    图  4  腐蚀试件表面形貌

    Figure  4.  Surface morphologies of corroded specimen

    图  5  腐蚀试件三维扫描数据

    Figure  5.  Three-dimensional scanning data of corroded specimen

    图  6  腐蚀试件微观组织扫描

    Figure  6.  Microstructure scanning of corroded specimen

    图  7  腐蚀动力学曲线

    Figure  7.  Corrosion kinetics curve

    图  8  破坏断面形式

    Figure  8.  Forms of failure sections

    图  9  试件在不同腐蚀时间下的应力-应变曲线

    Figure  9.  Stress-strain curves of specimens with different corrosion times

    图  10  最大蚀坑影响系数的力学性能退化

    Figure  10.  Mechanical property degradation of influence coefficients of largest corrosion pit

    图  11  不同腐蚀时间的力学性能退化

    Figure  11.  Mechanical property degradations of different corrosion times

    图  12  含蚀坑试件的应力状态

    Figure  12.  Stress states of specimens with corrosion pit

    图  13  不同腐蚀环境gyηs拟合曲线

    Figure  13.  Fitting curves of gy and ηs in different corrosion environments

    图  14  不同腐蚀环境guηs拟合曲线

    Figure  14.  Fitting curves of gu and ηs in different corrosion environments

    图  15  K1x的关系曲线

    Figure  15.  Relationship curve of K1 and x

    图  16  K2x的关系曲线

    Figure  16.  Relationship curve of K2 and x

    图  17  力学性能退化模型曲线与试验曲线对比

    Figure  17.  Comparison between mechanical property degradation model curves and test curves

    表  1  最大蚀坑影响系数

    Table  1.   Influence coefficients of largest corrosion pit

    试件编号 腐蚀时间/h h/mm h均值/mm Δdmax/μm Δdmax均值/μm ωmax/μm ωmax均值/μm ζmax/10-3 ζmax均值/10-3
    1-1 1 7.98 8.00 25.600 27.607 103.417 102.755 0.784 0.922
    1-2 8.01 29.515 99.551 1.082
    1-3 7.99 27.705 105.297 0.900
    2-1 2 7.95 7.96 36.655 35.870 118.184 119.650 1.424 1.350
    2-2 7.98 35.239 123.449 1.258
    2-3 7.95 35.715 117.318 1.367
    3-1 4 7.94 7.92 44.170 44.850 140.257 140.752 1.752 1.806
    3-2 7.91 45.152 143.911 1.791
    3-3 7.90 45.228 138.089 1.875
    4-1 8 7.89 7.87 55.895 57.589 156.381 159.833 2.531 2.637
    4-2 7.85 57.754 162.033 2.623
    4-3 7.87 59.117 161.084 2.756
    5-1 12 7.82 7.82 67.880 68.037 185.357 187.518 3.177 3.157
    5-2 7.83 69.170 186.941 3.268
    5-3 7.81 67.061 190.255 3.027
    6-1 24 7.79 7.78 72.965 74.020 205.289 209.490 3.331 3.361
    6-2 7.78 74.198 210.308 3.366
    6-3 7.78 74.897 212.873 3.387
    7-1 48 7.76 7.76 83.065 84.060 246.017 247.053 3.614 3.686
    7-2 7.76 85.117 244.199 3.823
    7-3 7.77 83.999 250.942 3.620
    8-1 72 7.65 7.64 97.250 97.044 326.452 327.166 3.788 3.769
    8-2 7.65 94.872 331.058 3.556
    8-3 7.64 99.011 323.987 3.961
    下载: 导出CSV

    表  2  腐蚀钢板本构模型参数

    Table  2.   Constitutive model parameters of corroded steel plate

    x/h 0 1 2 4 8 12 24 48 72
    Es/GPa 218.34 213.99 209.17 202.15 197.24 195.93 190.15 184.82 175.66
    fy/MPa 469.81 455.71 450.32 445.62 437.91 434.21 432.02 426.29 421.07
    fu/MPa 596.16 592.04 586.92 580.70 576.19 572.18 568.08 563.14 556.80
    εy/% 0.360 4 0.342 8 0.311 2 0.302 2 0.280 4 0.264 4 0.246 6 0.231 6 0.212 2
    K1 13.34 13.68 12.04 13.58 10.22 11.59 10.50 7.54 5.82
    K2 120.44 123.46 116.58 99.45 101.76 103.02 78.25 88.70 70.19
    K3 1.27 1.30 1.30 1.30 1.32 1.32 1.31 1.32 1.32
    下载: 导出CSV
  • [1] ZHANG Gang, ZHAO Xiao-cui, LU Ze-lei, et al. Review and discussion on fire behavior of bridge girders[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 422-446. doi: 10.1016/j.jtte.2022.05.002
    [2] 张岗, 贺拴海, 宋超杰, 等. 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34(1): 1-10. doi: 10.3969/j.issn.1001-7372.2021.01.001

    ZHANG Gang, HE Shuan-hai, SONG Chao-jie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.01.001
    [3] 王春生, 张静雯, 段兰, 等. 长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1): 1-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001004.htm

    WANG Chun-sheng, ZHANG Jing-wen, DUAN Lan, et al. Research progress and engineering application of long lasting high performance weathering steel bridges[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 1-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001004.htm
    [4] 郑凯锋, 张宇, 衡俊霖, 等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202003001.htm

    ZHENG Kai-feng, ZHANG Yu, HENG Jun-lin, et al. High strength weathering steel and its application and prospect in bridge engineering[J]. Journal of Harbin Institute of Institute of Technology, 2020, 52(3): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202003001.htm
    [5] 史炜洲, 童乐为, 陈以一, 等. 腐蚀对钢材和钢梁受力性能影响的试验研究[J]. 建筑结构学报, 2012, 33(7): 53-60.

    SHI Wei-zhou, TONG Le-wei, CHEN Yi-yi, et al. Experimental study on influence of corrosion on behavior of steel material and steel beams[J]. Journal of Building Structures, 2012, 33(7): 53-60. (in Chinese)
    [6] 邓露, 宁莎丽, 王维. 腐蚀环境下钢-混凝土组合梁桥疲劳寿命计算[J]. 公路工程, 2019, 44(2): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201902018.htm

    DENG Lu, NING Sha-li, WANG Wei. Calculation of the fatigue life of steel-concrete composite girder bridges under corrosive environment[J]. Highway Engineering, 2019, 44(2): 97-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201902018.htm
    [7] 朱劲松, 郭晓宇, 亢景付, 等. 耐候桥梁钢腐蚀力学行为研究及其应用进展[J]. 中国公路学报, 2019, 32(5): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htm

    ZHU Jin-song, GUO Xiao-yu, KANG Jing-fu, et al. Research on corrosion behavior, mechanical property and application of weathering steel in bridges[J]. China Journal of Highway and Transport, 2019, 32(5): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htm
    [8] 张浩. 强腐作用下桥梁钢力学性能退化试验研究[D]. 西安: 西安工业大学, 2022.

    ZHANG Hao. Experimental study on degradation of mechanical properties of bridge steel under strong corrosion[D]. Xi'an: Xi'an Technological University, 2022. (in Chinese)
    [9] 彭建新, 阳逸鸣, 唐皇, 等. 锈蚀钢筋蚀坑特征分析及其对力学性能的影响[J]. 长沙理工大学学报(自然科学版), 2015, 12(3): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201503008.htm

    PENG Jian-xin, YANG Yi-ming, TANG Huang, et al. Characteristics of pitting corrosion for steel reinforcement and its effect on mechanical properties[J]. Journal of Changsha University of Science and technology (Natural Science Edition), 2015, 12(3): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201503008.htm
    [10] 徐善华, 张宗星, 秦广冲. 考虑腐蚀钢板表面形貌的三维逆向重建及力学性能退化分析[J]. 材料科学与工程学报, 2017, 35(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201701016.htm

    XU Shan-hua, ZHANG Zong-xing, QIN Guang-chong. Three- dimensional reconstruction and degradation of mechanical properties based on real surface of corrosion steel[J]. Journal of Materials Science and Engineering, 2017, 35(1): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201701016.htm
    [11] 徐善华, 张宗星, 何羽玲, 等. 考虑蚀坑影响的腐蚀钢板力学性能退化试验研究[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(2): 164-171. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201702002.htm

    XU Shan-hua, ZHANG Zong-xing, HE Yu-ling, et al. Experimental study on monotonic tensile behavior of corroded steel in neutral salt spray environment[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2017, 49(2): 164-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201702002.htm
    [12] 彭建新, 张伟, 阳逸鸣, 等. 腐蚀对高性能钢Q550E力学指标影响的试验研究[J]. 公路交通科技, 2018, 35(10): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201810008.htm

    PENG Jian-xin, ZHANG Wei, YANG Yi-ming, et al. Experimental study on influence of corrosion on mechanical index of high performance steel Q550E[J]. Journal of Highway and Transportation Research and Development, 2018, 35(10): 56-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201810008.htm
    [13] QIN Guang-chong, XU Shan-hua, YAO Dao-qiang, et al. Study on the degradation of mechanical properties of corroded steel plates based on surface topography[J]. Journal of Constructional Steel Research, 2016, 125: 205-217.
    [14] KHEDMATI M R, NOURI Z H M E. Analytical simulation of nonlinear elastic-plastic average stress-average strain relationships for un-corroded/both-sides randomly corroded steel plates under uniaxial compression[J]. Thin-Walled Structures, 2015, 86: 132-141.
    [15] TOHIDI S, SHARIFI Y. Load-carrying capacity of locally corroded steel plate girder ends using artificial neural network[J]. Thin-Walled Structures, 2016, 100: 48-61.
    [16] BAJRACHARYA S, SASAKI E, TAMURA H. Numerical study on corrosion profile estimation of a corroded steel plate using eddy current[J]. Structure and Infrastructure Engineering, 2019, 15(9): 1151-1164.
    [17] KARINA C N, CHUN P J, OKUBO K. Tensile strength prediction of corroded steel plates by using machine learning approach[J]. Steel and Composite Structures, 2017, 25: 635-641.
    [18] RAIPUT A, PAIK J K. Effects of naturally-progressed corrosion on the chemical and mechanical properties of structural steels[J]. Structures, 2021, 29: 2120-2138.
    [19] 王友德, 徐善华, 李晗, 等. 一般大气环境下锈蚀结构钢表面特征与随机模型[J]. 金属学报, 2020, 56(2): 148-160. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202002003.htm

    WANG You-de, XU Shan-hua, LI Han, et al. Surface characteristics and stochastic model of corroded structural steel under general atmospheric environment[J]. Acta Metallurgica Sinica, 2020, 56(2): 148-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202002003.htm
    [20] WANG You-de, XU Shan-hua, WANG Hao, et al. Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology[J]. Construction and Building Materials, 2017, 152: 777-793.
    [21] XU Shan-hua, ZHANG Hai-jiang, WANG You-de. Estimation of the properties of corroded steel plates exposed to salt-spray atmosphere[J]. Corrosion Engineering Science and Technology, 2019, 54(5): 431-443.
    [22] KAINUMA S, JEONG Y S, AHN J H. Investigation on the stress concentration effect at the corroded surface achieved by atmospheric exposure test[J]. Materials Science and Engineering: A, 2014, 602: 89-97.
    [23] YU Qiang, DONG Chao-fang, FANG Yue-hua, et al. Atmospheric corrosion of Q235 carbon steel and Q450 weathering steel in Turpan, China[J]. Journal of Iron and Steel Research International, 2016, 23(10): 1061-1070.
    [24] RAJPUT A, PAIK J K. Effects of naturally-progressed corrosion on the chemical and mechanical properties of structural steels[J]. Structures, 2021, 29: 2120-2138.
    [25] 乔文靖, 朱浩云, 张岗, 等. 强腐作用下钢板组合梁的力学性能及失效机理[J]. 长安大学学报(自然科学版), 2021, 41(2): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202102005.htm

    QIAO Wen-jing, ZHU Hao-yun, ZHANG Gang, et al. Mechanical properties and failure mechanism of steel plate composite beams under strong corrosion[J]. Journal of Chang'an University (Natural Science Edition), 2021, 41(2): 46-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202102005.htm
    [26] CHEN Jun-ling, LI Jin-wei, LI Zhe-xu. Experiment research on rate-dependent constitutive model of Q420[J]. Construction and Building Materials, 2017, 153: 816-823.
    [27] WOLOSZY K K, GARBATOV Y. Random field modelling of mechanical behaviour of corroded thin steel plate specimens[J]. Engineering Structures, 2020, 212: 1-12.
    [28] QIAO Wen-jing, ZHANG Hao, YANG Fan, et al. Ductility degradation of weathering steel Q345 after exposure to hydrochloric-acid corrosion dependent on pitting damage[J]. Journal of Materials in Civil Engineering, 2022, 34(11): 04022304.
    [29] O'BRIEN C, MCBRIDE A, ZAGHI A E, et al. Mechanical behavior of stainless steel fiber-reinforced composites exposed to accelerated corrosion[J]. Materials, 2017, DOI: 10.3390/ma10070772.
    [30] YANG F, YUAN M M, QIAO W J, et al. Mechanical investigation of carbon steel under strong corrosion effected by corrosion pits[J]. Mathematical Problems in Engineering, 2022, 1719196: 1-18.
    [31] REN Song-bo, GU Ying, KONG Chao, et al. Effects of the corrosion pitting parameters on the mechanical properties of corroded steel[J]. Construction and Building Materials, 2021, 272: 121941.
    [32] 冯大帅. 中性盐雾腐蚀后Q345B钢材疲劳性能研究[D]. 徐州: 中国矿业大学, 2019.

    FENG Da-shuai. Study on fatigue properties of Q345B steel after neutral salt spray corrosion[D]. Xuzhou: China University of Mining and Technology, 2019. (in Chinese)
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  664
  • HTML全文浏览量:  144
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回