Speed sensorless MPTC of linear induction motors for rail transit based on improved SMO
-
摘要: 针对轨道交通直线感应电机(LIM)无速度传感器模型预测控制对速度观测的鲁棒性及模型精度要求较高的问题,提出了一种基于改进滑模观测器(SMO)的模型预测推力控制(MPTC)策略,应用改进滑模观测器提高速度及磁链观测的实时性及鲁棒性,降低对模型精度要求,实现LIM无速度传感器模型预测高性能控制;考虑动态边端效应,建立静止坐标系下LIM动态模型;建立模型预测推力控制离散模型,提出了基于改进SMO的磁链和速度的观测方法,并完成基于改进SMO的直线感应电机无速度传感器模型预测推力控制系统设计;为提高速度及磁链的估计精度,减小滑模抖振,提高收敛速度,设计一种基于连续sigmod函数的开关函数,并采用改进变指数幂次趋近律,平衡系统快速收敛及抖振间的矛盾;对改进SMO的稳定性和动态性能进行分析,搭建硬件在环试验环境验证算法的有效性。试验结果表明:改进SMO观测精度高,在次级电阻、励磁电感突变时,速度观测误差为0.20和0.35 m·s-1,均减小了1.4%;在引入方差为0.01的白噪声扰动时,最大误差为0.2 m·s-1,误差率约为1.8%,观测器收敛速度快,观测结果抖动小,具有较好的抗干扰能力;在多速域工况下,误差为0.075 m·s-1,同样可以满足性能要求,同时基于改进SMO的直线感应电机无速度传感器MPC控制系统稳态误差小,动态响应快,系统鲁棒性能好。Abstract: To address the high robustness of speed observation and model accuracy for speed sensorless model predictive control of linear induction motors (LIM) in rail transit, a model predictive thrust control (MPTC) strategy based on an improved sliding mode observer (SMO) was proposed. Through the improved SMO, the real-time performance and robustness of speed and flux linkage observation were enhanced, and the demand for model accuracy was lowered, thus realizing high performance model predictive control of the speed sensorless of LIM. A LIM dynamic model based on the dynamic end effect was established in the static coordinate system. A discrete model of model predictive thrust control was established. An observation method of flux linkage and speed based on the improved SMO was proposed. Subsequently, a speed sensorless MPTC system for LIM based on the improved SMO was designed. To enhance the estimation precision of speed and flux linkage, minimize sliding mode chattering, and accelerate the convergence speed, a switch function based on the continuous sigmod function was designed. Meanwhile, an improved variable exponential power reaching law was proposed to balance the contradiction between the rapid convergence and chattering of the system. The stability and dynamic performance of the improved SMO were analyzed, and the hardware-in-the-loop environment was built to verify the effectiveness of the algorithm. Experimental results show that the observation accuracy of the improved SMO is high. In the case of abrupt changes in secondary resistance and excitation inductance, the speed observation errors are 0.20 and 0.35 m·s-1, both of which reduce by 1.4%. When the white noise perturbation with a variance of 0.01 is introduced, the maximum error is 0.20 m·s-1, with an error rate of about 1.8%. Characterized by a fast convergence speed and less chattering of observation results, the observer exhibits a better anti-interference ability. Under the multi-speed domain conditions, the error is 0.075 m·s-1, satisfying the performance requirements. The speed sensorless MPC system of LIM based on the improved SMO exhibits small steady state error, fast dynamic response, and good robustness performance.
-
表 1 电机参数
Table 1. Motor parameters
参数 数值 极距/m 0.280 8 初级长度/m 2.476 互感/mH 26.477 初级漏感/mH 6.688 次级漏感/mH 2.091 初级电阻/Ω 0.138 次级电阻/Ω 0.576 额定功率/kw 120 额定速度/(m·s-1) 11.11 表 2 速度辨识方案的试验条件
Table 2. Experimental conditions for speed identification schemes
试验 试验名称 试验工况 1 次级电阻Rr变化时的速度辨识性能对比 恒负载1 kN,Rr突变为1.5倍 2 励磁电感Lm变化时的速度辨识性能对比 恒负载1 kN,Lm突变为1.5倍 3 负载和外部扰动下的速度辨识性能对比 变负载(1 kN→2 kN)和采集的电压电流引入白噪声(方差0.01) 4 多速域工况下的观测性能 恒负载1 kN,加、减、匀速 -
[1] ZHANG Y, SHAO L, YIN Z, et al. Ultralocal model based model predictive torque control of induction motor drives with model free speed controller[J]. IEEE Transactions on Industrial Electronics, 2025, https://ieeexplore.ieee.org/document/10908079. https://ieeexplore.ieee.org/document/10908079 [2] RODRÍGUEZ J, KENNEL R M, ESPINOZA J R, et al. High-performance control strategies for electrical drives: an experimental assessment[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 812-820. doi: 10.1109/TIE.2011.2158778 [3] 马卫华, 罗世辉, 张敏, 等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009MA Wei-hua, LUO Shi-hui, ZHANG Min, et al. Review of research on medium and low speed maglev vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009 [4] YOO J, SUL S K. Direct MTPA tracking control of sensorless IPMSM in low-speed region[J]. IEEE Transactions on Industrial Electronics, 2025, 72(2): 1271-1280. doi: 10.1109/TIE.2024.3417990 [5] 宁博文, 周凤星, 卢少武. 基于高阶滑模速度控制器的异步电机模型预测转矩控制[J]. 控制与决策, 2021, 36(4): 953-958.NING Bo-wen, ZHOU Feng-xing, LU Shao-wu. A model predictive torque control for induction motor based on high order sliding mode speed controller[J]. Control and Decision, 2021, 36(4): 953-958. [6] 潘月斗, 王国防. 基于中立型系统理论的感应电机高精度磁链观测器研究[J]. 自动化学报, 2020, 46(10): 2109-2120.PAN Yue-dou, WANG Guo-fang. Research on high precision flux observer of induction motor based on neutral system theory[J]. Acta Automatica Sinica, 2020, 46(10): 2109-2120. [7] 韦汉培, 朱保鹏, 魏海峰, 等. 考虑效率最大化的新型感应电机转子磁链给定[J]. 电机与控制应用, 2018, 45(2): 81-85. doi: 10.3969/j.issn.1673-6540.2018.02.015WEI Han-pei, ZHU Bao-peng, WEI Hai-feng, et al. New rotor flux reference of induction motor considering efficiency maximization[J]. Electric Machines and Control Application, 2018, 45(2): 81-85. doi: 10.3969/j.issn.1673-6540.2018.02.015 [8] 罗慧. 感应电机全阶磁链观测器和转速估算方法研究[D]. 武汉: 华中科技大学, 2009.LUO Hui. Research on full-order flux observer and speed estimation method of induction motor[D]. Wuhan: Huazhong University of Science and Technology, 2009. [9] 吴文进, 苏建徽, 刘鹏, 等. 感应电机全阶磁链观测器设计及其控制性能对比分析[J]. 电机与控制学报, 2016, 20(4): 78-83, 92.WU Wen-jin, SU Jian-hui, LIU Peng, et al. Design of full-order flux observer and comparision analysis for its control performance[J]. Electric Machines and Control, 2016, 20(4): 78-83, 92. [10] BARUT M. Bi input-extended Kalman filter based estimation technique for speed-sensorless control of induction motors[J]. Energy Conversion and Management, 2010, 51(10): 2032-2040. doi: 10.1016/j.enconman.2010.02.037 [11] 金海, 黄进. 基于模型参考方法的感应电机磁链的自适应观测及参数辨识[J]. 电工技术学报, 2006, 21(1): 65-69. doi: 10.3321/j.issn:1000-6753.2006.01.013JIN Hai, HUANG Jin. Adaptive flux estimation and parameters identification of induction motors based on model reference approach[J]. Transactions of China Electrotechnical Society, 2006, 21(1): 65-69. doi: 10.3321/j.issn:1000-6753.2006.01.013 [12] 赵静琼. 感应电机磁链观测方法的研究[D]. 兰州: 兰州交通大学, 2015.ZHAO Jing-qiong. Research on flux observation method of induction motor[D]. Lanzhou: Lanzhou Jiaotong University, 2015. [13] 左运, 葛兴来, 李松涛, 等. 基于改进型q-PLL的牵引电机无速度传感器控制[J]. 中国电机工程学报, 2021, 41(1): 383-392.ZUO Yun, GE Xing-lai, LI Song-tao, et al. Speed sensorless control of traction motor based on the improved q-PLL[J]. Proceedings of the CSEE, 2021, 41(1): 383-392. [14] XU W, DIAN R, LIU Y, et al. Robust flux estimation method for linear induction motors based on improved extended state observers[J]. IEEE Transactions on Power Electronics, 2018, 34(5): 4628-4640. [15] WANG H, GE X, LIU Y. Second-order sliding-mode MRAS observer-based sensorless vector control of linear induction motor drives for medium-low speed maglev applications[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9938-52. doi: 10.1109/TIE.2018.2818664 [16] YU X, ZHANG C, SU T. Speed sensorless of induction motor with adaptive full order state observer[J]. Journal of Physics: Conference Series, 2020, 1550(4): 042058. doi: 10.1088/1742-6596/1550/4/042058 [17] DEMIR R. Robust stator flux and load torque estimations for induction motor drives with EKF-based observer[J]. Electrical Engineering, 2023, 105(1): 551-562. doi: 10.1007/s00202-022-01717-y [18] EMRAH Z. A comparative study on adaptive EKF observers for state and parameter estimation of induction motor[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1443-52. doi: 10.1109/TEC.2020.2979850 [19] SAOUDI K, BDIRINA K, GUESMI K. Robust estimation and control of uncertain affine nonlinear systems using predictive sliding mode control and sliding mode observer[J]. International Journal of Systems Science, 2024, 55(7): 1480-1492. doi: 10.1080/00207721.2024.2306193 [20] TU X, HOU X, ZHAO J, et al. Speed identification of speed sensorless linear induction motor based on MRAS[J]. CES Transactions on Electrical Machines and Systems, 2023, 7(3): 294-300. doi: 10.30941/CESTEMS.2023.00032 [21] TANG L, XU W, TANG Y, et al. Model predictive thrust control for linear induction machine: a fuzzy optimization approach[J]. IEEE Transactions on Industry Applications, 2023, 59(2): 2532-45. doi: 10.1109/TIA.2022.3225513 [22] CHEN J, HUANG J. Online decoupled stator and rotor resistances adaptation for speed sensorless induction motor drives by a time-division approach[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4587-99. doi: 10.1109/TPEL.2016.2596839 [23] 姚文龙, 王加利, 庞震, 等. 吊舱推进电机的无模型自适应滑模矢量控制[J]. 交通运输工程学报, 2020, 20(3): 72-79. doi: 10.19818/j.cnki.1671-1637.2020.03.006YAO Wen-long, WANG Jia-li, PANG Zhen, et al. Model free adaptive sliding mode vector control for podded propulsion motor[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 72-79. doi: 10.19818/j.cnki.1671-1637.2020.03.006 [24] VIEIRA R P, GASTALDINI C C, AZZOLIN R Z, et al. Sensorless sliding-mode rotor speed observer of induction machines based on magnetizing current estimation[J]. IEEE Transactions on Industrial Electronics, 2014, 61(9): 4573-82. doi: 10.1109/TIE.2013.2290759 [25] SLOTINE J E. Tracking control of non-linear systems using sliding surfaces with application to robot manipulations[J]. International Journal of Control, 1983, 38(2): 465-492. doi: 10.1080/00207178308933088 [26] 郑征, 毛绍冉. 比例积分型线性超螺旋算法滑模观测器的感应电机无传感器控制[J]. 太阳能学报, 2022, 43(8): 316-322.ZHENG Zheng, MAO Shao-ran. Sensorless control of induction motor based on proportional-integral linear super twisting algorithm sliding mode observer[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 316-322. [27] 王勃, 王天擎, 于泳, 等. 感应电机电流环非线性积分滑模控制策略[J]. 电工技术学报, 2021, 36(10): 2039-2048.WANG Bo, WANG Tian-qing, YU Yong, et al. Nonlinear integral sliding mode control strategy for current loop of induction motor drives[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2039-2048. -
下载: