留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内河船舶远程驾控技术试验研究

李梦霞 徐图远 邹天悦 柳晨光 郑茂 初秀民 严新平

李梦霞, 徐图远, 邹天悦, 柳晨光, 郑茂, 初秀民, 严新平. 内河船舶远程驾控技术试验研究[J]. 交通运输工程学报, 2025, 25(2): 141-155. doi: 10.19818/j.cnki.1671-1637.2025.02.009
引用本文: 李梦霞, 徐图远, 邹天悦, 柳晨光, 郑茂, 初秀民, 严新平. 内河船舶远程驾控技术试验研究[J]. 交通运输工程学报, 2025, 25(2): 141-155. doi: 10.19818/j.cnki.1671-1637.2025.02.009
LI Meng-xia, XU Tu-yuan, ZOU Tian-yue, LIU Chen-guang, ZHENG Mao, CHU Xiu-min, YAN Xin-ping. Experimental research on remote navigation and control technology for inland waterway ships[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 141-155. doi: 10.19818/j.cnki.1671-1637.2025.02.009
Citation: LI Meng-xia, XU Tu-yuan, ZOU Tian-yue, LIU Chen-guang, ZHENG Mao, CHU Xiu-min, YAN Xin-ping. Experimental research on remote navigation and control technology for inland waterway ships[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 141-155. doi: 10.19818/j.cnki.1671-1637.2025.02.009

内河船舶远程驾控技术试验研究

doi: 10.19818/j.cnki.1671-1637.2025.02.009
基金项目: 

国家自然科学基金项目 52401422

国家资助博士后研究人员计划 GZC20241296

湖北省青年科技人才专项 2023DJC175

详细信息
    作者简介:

    李梦霞(1994-),女,浙江东阳人,武汉理工大学副研究员,工学博士,从事船舶远程驾控、船舶自主航行研究

    通讯作者:

    初秀民(1969-),男,吉林通化人,武汉理工大学研究员,工学博士

  • 中图分类号: U664.82

Experimental research on remote navigation and control technology for inland waterway ships

Funds: 

National Natural Science Foundation of China 52401422

State-Funded Postdoctoral Researcher Program GZC20241296

Hubei Provincial Youth Science and Technology Talent Project 2023DJC175

More Information
    Corresponding author: CHU Xiu-min (1969-), male, research fellow, PhD, chuxm@whut.edu.cn
Article Text (Baidu Translation)
  • 摘要: 为探究内河船舶远程驾控技术的可行性和可靠性,设计了一套船岸协同远程驾控系统;使用4G/5G双通道网络架构构建了高效稳定的船岸间通信;采用远程驾控人机切换控制策略,从物理层面实现人工驾驶与远程驾驶的模式切换;通过将现有内河传统船舶改造成远程驾驶船舶,在内河水域针对对遇、交叉、追越等典型会遇局面开展了远程避碰试验,并基于最近会遇距离和最近会遇时间的风险模型分析风险态势变化,深入挖掘船舶远程驾控存在的问题。试验结果表明:该远程驾控技术在内河库区狭窄航段的应用可行,但存在远程驾控员与驾控船舶物理分离,存在临场感、情景意识缺失等现象,难以精确感知交通态势并影响操纵决策,试验过程中感知与控制链路均受到网络的影响,通信平均延迟在1 s以内,最大延迟达到3 s,对内河船舶避碰决策的影响较大,增加了远程驾驶的风险; 远程驾驶涉及复杂人机交互与协作,需要采用先进的技术,包括数字孪生、高精度船舶运动建模、船舶姿态实时监测反馈及通信补偿等,实船试验为系统设计提供了理论和技术支持,未来需融入更高级的机器认知和决策功能,以减少人机冲突并提高智能化水平。

     

  • 图  1  远程驾控系统架构

    Figure  1.  Architecture of remote navigation and control system

    图  2  远程驾控系统数据流

    Figure  2.  Data flow of remote navigation and control system

    图  3  舵角控制的改造方案

    Figure  3.  Modification scheme of rudder angle control

    图  4  人机驾控模式切换旋钮开关

    Figure  4.  Switching knob of human-machine navigation and control mode

    图  5  关刀峡水道

    Figure  5.  Guandao Gorge Waterway

    图  6  航道05104

    Figure  6.  Channel 05104

    图  7  岸基驾控台

    Figure  7.  Shore-based navigation and control station

    图  8  船舶加减速性能分析

    Figure  8.  Analysis of acceleration and deceleration performance of ship

    图  9  岸基驾控人机交互界面

    Figure  9.  Human-machine interaction interface of shore-based navigation and control

    图  10  追越(本船船头第一视角)

    Figure  10.  Overtaking (frontal view of own ship)

    图  11  两船轨迹与距离(追越1)

    Figure  11.  Trajectories and distances for two ships (overtaking 1)

    图  12  两船轨迹与距离(小角度交叉相遇)

    Figure  12.  Trajectories and distances for two ships (small angle crossing encounter)

    图  13  两船轨迹与距离(对遇)

    Figure  13.  Trajectories and distances for two ships (heading-on encounter)

    图  14  两船轨迹与距离(大角度交叉相遇)

    Figure  14.  Trajectories and distances for two ships (big angle crossing encounter)

    图  15  两船轨迹与距离(追越2)

    Figure  15.  Trajectories and distances for two ships (overtaking 2)

    图  16  两船碰撞风险及DCPATCPA变化趋势(追越1)

    Figure  16.  Trends of collision risk, DCPA and TCPA between two ships (overtaking 1)

    图  17  两船碰撞风险及DCPATCPA变化趋势(小角度交叉相遇)

    Figure  17.  Trends of collision risk, DCPA and TCPA between two ships (small angle crossing encounter)

    图  18  两船碰撞风险及DCPATCPA变化趋势(对遇)

    Figure  18.  Trends of collision risk, DCPA and TCPA between two ships (heading-on encounter)

    图  19  两船碰撞风险、DCPATCPA变化趋势(大角度交叉相遇)

    Figure  19.  Trends of collision risk, DCPA and TCPA between two ships (big angle crossing encounter)

    图  20  两船碰撞风险、DCPATCPA变化趋势(追越2)

    Figure  20.  Trends of collision risk, DCPA and TCPA between two ships (overtaking 2)

    表  1  初始参数

    Table  1.   Initial parameters

    会遇局面 船舶 位置 初始速度/kn 初始航向/(°) 相对方位/(°) 相对距离/m
    经度/(°) 纬度/(°)
    追越1 本船 109.455 9 31.006 5 3.2 193 184 212.54
    目标船 109.453 9 31.005 1 3.0 215
    小角度交叉相遇 本船 109.440 4 30.994 5 3.0 13 21 622.45
    目标船 109.446 1 30.999 3 3.5 238
    对遇 本船 109.445 1 30.999 1 3.6 246 228 540.64
    目标船 109.440 0 30.996 7 4.7 64
    大角度交叉相遇 本船 109.444 8 30.994 8 4.7 68 59 209.49
    目标船 109.444 5 30.999 0 1.6 125
    追越2 本船 109.444 8 30.999 3 4.6 94 78 178.39
    目标船 109.452 2 30.999 6 5.2 52
    下载: 导出CSV
  • [1] 刘佳仑, 杨帆, 马枫, 等. 智能船舶航行功能测试验证的方法体系[J]. 中国舰船研究, 2021, 16(1): 45-50.

    LIU Jia-lun, YANG Fan, MA Feng, et al. Method system of navigation function test and verification for intelligent ship[J]. Chinese Journal of Ship Research, 2021, 16(1): 45-50.
    [2] 严新平, 柳晨光. 智能航运系统的发展现状与趋势[J]. 智能系统学报, 2016, 11(6): 807-817.

    YAN Xin-ping, LIU Chen-guang. Review and prospect for intelligent waterway transportation system[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 807-817.
    [3] KIM H, ROH H, LIM J. Development and performance evaluation results of remote control systems for autonomous ships[J]. Journal of the Korean Society of Naval Engineers and Port, 2024, 48(4): 335-341.
    [4] 游旭, 刘佳仑, 马枫, 等. 异构船舶编队航行的研究现状与技术展望[J]. 哈尔滨工程大学学报, 2023, 44(1): 11-22.

    YOU Xu, LIU Jia-lun, MA Feng, et al. Analysis and strategy development for the navigation of heterogeneous ship formations[J]. Journal of Harbin Engineering University, 2023, 44(1): 11-22.
    [5] KUNTASA T, LIRN T C. A conceptual model of autonomous ship remote operators' competency[J]. Journal of Navigation, 2024, 76(6): 1-22.
    [6] 张浦哲, 吴兵, 严新平, 等. 内河船舶远程驾驶控制系统安全分析[J]. 中国安全科学学报, 2022, 32(8): 126-132.

    ZHANG Pu-zhe, WU Bing, YAN Xin-ping, et al. Safety analysis for remote control system of inland ships[J]. China Safety Science Journal, 2022, 32(8): 126-132.
    [7] VENTIKOS N P, CHMURSKI A, LOUZIS K. A systems-based application for autonomous vessels safety: hazard identification as a function of increasing autonomy levels Safety Science[J]. Safety Science, 2020, 131: 104919. doi: 10.1016/j.ssci.2020.104919
    [8] 范存龙, 张笛, 翁金贤, 等. 远程控制船舶内河航行风险评价研究[J]. 安全与环境学报, 2024, 24(1): 72-83.

    FAN Cun-long, ZHANG Di, WENG Jin-xian, et al. Quantitative risk assessment on the remote control ship navigation in inland waterway[J]. Journal of Safety and Environment, 2024, 24(1): 72-83.
    [9] 李晨, 严新平, 刘佳仑, 等. 船舶远程驾驶控制系统设计与应[J]. 交通运输工程学报, 2024, 24(5): 333-347. doi: 10.19818/j.cnki.1671-1637.2024.05.021

    LI Chen, YAN Xin-ping, LIU Jia-lun, et al. Design andapplication of ship remote driving control system[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 333-347. doi: 10.19818/j.cnki.1671-1637.2024.05.021
    [10] FAN S Q, BLANCO-DAVIS E, FAIRCLOUGH S, et al. Incorporation of seafarer psychological factors into maritime safety assessment[J]. Ocean and Coastal Management, 2023, 237: 106515. doi: 10.1016/j.ocecoaman.2023.106515
    [11] 马枫, 陈晨, 刘佳仑, 等. 船岸协同支持下的内河船舶远程驾控系统关键技术研究[J]. 中国舰船研究, 2022, 17(5): 125-133.

    MA Feng, CHEN Chen, LIU Jia-lun, et al. Key technologies of ship remote control system in inland waterways under ship-shore cooperation conditions[J]. Chinese Journal of Ship Research, 2022, 17(5): 125-133.
    [12] OUAFIQ E M, SAADANE R, CHEHRI A, et al. AI-based modeling and data-driven evaluation for smart farming-oriented big data architecture using IoT with energy harvesting capabilities sustainable energy technologies and assessments[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102093. doi: 10.1016/j.seta.2022.102093
    [13] LAZAROWSKA A. A discrete planning approach in collision avoidance for smart ships[J]. Procedia Computer Science, 2020, 176: 380-389. doi: 10.1016/j.procs.2020.08.039
    [14] 王启扬. 面向智能船舶远程驾驶的数据加密技术研究[D]. 大连: 大连海事大学, 2022.

    WANG Qi-yang. Research on data encryption technology for intelligent ship remote navigation[D]. Dalian: Dalian Maritime University, 2022.
    [15] GHADERI H. Autonomous technologies in short sea shipping: trends, feasibility and implications[J]. Transport Reviews, 2019, 39: 152-73. doi: 10.1080/01441647.2018.1502834
    [16] YOU X, MA F, LU S, et al. An integrated platform for the development of autonomous and remote-control ships[C]//TUHH. Proceedings of the 19th Conference on Computer and IT Applications in the Maritime Industries (COMPIT 2020). Pontignano: TUHH, 2020: 316-327.
    [17] 李明卉. 中国《海商法》对无人船远程操控人的适用问题研究[D]. 大连: 大连海事大学, 2020.

    LI Ming-hui. Research of the application of unmanned ship remote operator under Chinese maritime code[D]. Dalian: Dalian Maritime University, 2020.
    [18] AHMED N, ISLAM A U, BORA K C. Suitable site selection of water atms (basis of interior/exterior conditions) using graph theory[J]. Journal of Cases on Information Technology, 2022, 24(1): 1-10. doi: 10.4018/JCIT.306244
    [19] LIU C G, CHU X M, WU W X, et al. Human-machine cooperation research for navigation of maritime autonomous surface ships: a review and consideration[J]. Ocean Engineering, 2022, 246: 110555. doi: 10.1016/j.oceaneng.2022.110555
    [20] CHENG T T, UTNE I B, WU B, et al. A novel system-theoretic approach for human—system collaboration safety: case studies on two degrees of autonomy for autonomous ships[J]. Reliability Engineering and System Safety, 2023, 237: 1-16.
    [21] 李晨, 严新平, 刘佳仑, 等. 船舶远程驾驶人机主从博弈控制方法研究[J]. 交通运输系统工程与信息, 2024, 24(3): 21-31, 74.

    LI Chen, YAN Xin-ping, LIU Jia-lun, et al. Research on the master-slave game control method of ship remote driving man-machine system[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(3): 21-31, 74.
    [22] 王玉虎, 刘伟. 一种基于人机融合的态势认知模型[J]. 指挥与控制学报, 2023, 9(1): 76-84. doi: 10.3969/j.issn.2096-0204.2023.01.0076

    WANG Yu-hu, LIU Wei. A situation cognition model based on human-machine hybrid fusion[J]. Journal of Command and Control, 2023, 9(1): 76-84. doi: 10.3969/j.issn.2096-0204.2023.01.0076
    [23] 刘佳仑, 韩成浩, 李诗杰, 等. 智能拖轮研究现状、关键技术与展望[J]. 中国船检, 2022(8): 50-55.

    LIU Jia-lun, HAN Cheng-hao, LI Shi-jie, et al. Research status, key technologies and prospect of intelligent tugboats[J]. China Ship Survey, 2022(8): 50-55.
    [24] LIN N, YAN X, LIU J, et al. Towards reliable control takeover in ship remote-control system: a cyber-physical fusion testing approach[J]. Journal of Marine Engineering and Technology, 2025, 24(2): 108-120. doi: 10.1080/20464177.2024.2440171
    [25] 李峰, 曾乐, 刘斌, 等. 基于大数据分析的AIS虚拟航标布设技术[J]. 水运工程, 2023(11): 173-179.

    LI Feng, ZENG Le, LIU Bin, et al. Virtual navigation aid deployment technology by AIS based on big data analysis[J]. Port and Waterway Engineering, 2023(11): 173-179.
    [26] TAYAMA H, FUKUDA O, YAMAMOTO K, et al. 6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor[J]. IEEE Transactions on Power Delivery, 1995, 10(4): 1718-23. doi: 10.1109/61.473389
    [27] 刘智心, 初秀民, 郑茂, 等. 智能船舶船岸协同实验关键技术研究[J]. 交通信息与安全, 2020, 38(2): 63-70.

    LIU Zhi-xin, CHU Xiu-min, ZHENG Mao, et al. A ship-to-shore cooperative simulation system for intelligent ship[J]. Journal of Transport Information and Safety, 2020, 38(2): 63-70.
    [28] 郑文琪. 多组网方式下的远程驾驶研究[D]. 成都: 西南交通大学, 2021.

    ZHENG Wen-qi. Research on remote driving under multi-network mode[D]. Chengdu: Southwest Jiaotong University, 2021.
    [29] 王远渊, 刘佳仑, 马枫, 等. 智能船舶远程驾驶控制技术研究现状与趋势[J]. 中国舰船研究, 2021, 16(1): 18-31.

    WANG Yuan-yuan, LIU Jia-lun, MA Feng, et al. Review and prospect ofremote control intelligent ships[J]. Chinese Journal of Ship Research, 2021, 16(1): 18-31.
    [30] 王知昊, 元海文, 李维娜, 等. 交汇水域船舶轨迹预测与航行意图识别[J]. 交通信息与安全, 2022, 40(4): 101-109.

    WANG Zhi-hao, YUAN Hai-wen, LI Wei-na, et al. Trajectory prediction and intention identification of ships in confluence waters[J]. Journal of Transport Information and Safety, 2022, 40(4): 101-109.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  828
  • HTML全文浏览量:  217
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回