Experimental research on remote navigation and control technology for inland waterway ships
-
摘要: 为探究内河船舶远程驾控技术的可行性和可靠性,设计了一套船岸协同远程驾控系统;使用4G/5G双通道网络架构构建了高效稳定的船岸间通信;采用远程驾控人机切换控制策略,从物理层面实现人工驾驶与远程驾驶的模式切换;通过将现有内河传统船舶改造成远程驾驶船舶,在内河水域针对对遇、交叉、追越等典型会遇局面开展了远程避碰试验,并基于最近会遇距离和最近会遇时间的风险模型分析风险态势变化,深入挖掘船舶远程驾控存在的问题。试验结果表明:该远程驾控技术在内河库区狭窄航段的应用可行,但存在远程驾控员与驾控船舶物理分离,存在临场感、情景意识缺失等现象,难以精确感知交通态势并影响操纵决策,试验过程中感知与控制链路均受到网络的影响,通信平均延迟在1 s以内,最大延迟达到3 s,对内河船舶避碰决策的影响较大,增加了远程驾驶的风险; 远程驾驶涉及复杂人机交互与协作,需要采用先进的技术,包括数字孪生、高精度船舶运动建模、船舶姿态实时监测反馈及通信补偿等,实船试验为系统设计提供了理论和技术支持,未来需融入更高级的机器认知和决策功能,以减少人机冲突并提高智能化水平。Abstract: To investigate the feasibility and reliability of remote navigation and control technology for inland waterway ships, a ship-shore collaboration remote navigation and control system was designed. By designing the 4G/5G dual-channel network architecture, efficient and stable ship-shore communication was established. A human-machine switching control strategy was adopted to physically implement mode transitions between manual navigation and remote navigation. Through retrofitting conventional inland waterway ships into remotely navigated ships, remote collision avoidance experiments were conducted in inland waters for typical encounter scenarios including heading-on, crossing, and overtaking. Risk evolution patterns were analyzed by using risk assessment models based on distance to closest point of approach (DCPA) and time to closest point of approach (TCPA), and existing challenges in remote navigation and control of ships were investigated. Experimental results show that the remote navigation and control technology proves applicable in narrow channel sections of inland waterways. However, the physical separation between remote operators and controlled ships leads to deficiencies in presence perception and situational awareness, hindering accurate assessment of traffic conditions and affecting operational decisions. Both perception and control links are affected by network performance during trials. The average communication delay is within one second, and the maximum delay reaches three seconds, significantly impacting collision avoidance decisions on inland waterway ships and elevating the risks of remote navigation. Remote navigation and control involve complex human-machine interaction and coordination, requiring advanced technologies including digital twins, high-precision ship motion modelling, real-time ship attitude monitoring and feedback, and communication compensation. Full-scale ship tests provide theoretical and technical support for system design. Advanced machine cognition and decision-making should be utilized in future to mitigate human-machine conflicts and improve intelligent operation.
-
表 1 初始参数
Table 1. Initial parameters
会遇局面 船舶 位置 初始速度/kn 初始航向/(°) 相对方位/(°) 相对距离/m 经度/(°) 纬度/(°) 追越1 本船 109.455 9 31.006 5 3.2 193 184 212.54 目标船 109.453 9 31.005 1 3.0 215 小角度交叉相遇 本船 109.440 4 30.994 5 3.0 13 21 622.45 目标船 109.446 1 30.999 3 3.5 238 对遇 本船 109.445 1 30.999 1 3.6 246 228 540.64 目标船 109.440 0 30.996 7 4.7 64 大角度交叉相遇 本船 109.444 8 30.994 8 4.7 68 59 209.49 目标船 109.444 5 30.999 0 1.6 125 追越2 本船 109.444 8 30.999 3 4.6 94 78 178.39 目标船 109.452 2 30.999 6 5.2 52 -
[1] 刘佳仑, 杨帆, 马枫, 等. 智能船舶航行功能测试验证的方法体系[J]. 中国舰船研究, 2021, 16(1): 45-50.LIU Jia-lun, YANG Fan, MA Feng, et al. Method system of navigation function test and verification for intelligent ship[J]. Chinese Journal of Ship Research, 2021, 16(1): 45-50. [2] 严新平, 柳晨光. 智能航运系统的发展现状与趋势[J]. 智能系统学报, 2016, 11(6): 807-817.YAN Xin-ping, LIU Chen-guang. Review and prospect for intelligent waterway transportation system[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 807-817. [3] KIM H, ROH H, LIM J. Development and performance evaluation results of remote control systems for autonomous ships[J]. Journal of the Korean Society of Naval Engineers and Port, 2024, 48(4): 335-341. [4] 游旭, 刘佳仑, 马枫, 等. 异构船舶编队航行的研究现状与技术展望[J]. 哈尔滨工程大学学报, 2023, 44(1): 11-22.YOU Xu, LIU Jia-lun, MA Feng, et al. Analysis and strategy development for the navigation of heterogeneous ship formations[J]. Journal of Harbin Engineering University, 2023, 44(1): 11-22. [5] KUNTASA T, LIRN T C. A conceptual model of autonomous ship remote operators' competency[J]. Journal of Navigation, 2024, 76(6): 1-22. [6] 张浦哲, 吴兵, 严新平, 等. 内河船舶远程驾驶控制系统安全分析[J]. 中国安全科学学报, 2022, 32(8): 126-132.ZHANG Pu-zhe, WU Bing, YAN Xin-ping, et al. Safety analysis for remote control system of inland ships[J]. China Safety Science Journal, 2022, 32(8): 126-132. [7] VENTIKOS N P, CHMURSKI A, LOUZIS K. A systems-based application for autonomous vessels safety: hazard identification as a function of increasing autonomy levels Safety Science[J]. Safety Science, 2020, 131: 104919. doi: 10.1016/j.ssci.2020.104919 [8] 范存龙, 张笛, 翁金贤, 等. 远程控制船舶内河航行风险评价研究[J]. 安全与环境学报, 2024, 24(1): 72-83.FAN Cun-long, ZHANG Di, WENG Jin-xian, et al. Quantitative risk assessment on the remote control ship navigation in inland waterway[J]. Journal of Safety and Environment, 2024, 24(1): 72-83. [9] 李晨, 严新平, 刘佳仑, 等. 船舶远程驾驶控制系统设计与应[J]. 交通运输工程学报, 2024, 24(5): 333-347. doi: 10.19818/j.cnki.1671-1637.2024.05.021LI Chen, YAN Xin-ping, LIU Jia-lun, et al. Design andapplication of ship remote driving control system[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 333-347. doi: 10.19818/j.cnki.1671-1637.2024.05.021 [10] FAN S Q, BLANCO-DAVIS E, FAIRCLOUGH S, et al. Incorporation of seafarer psychological factors into maritime safety assessment[J]. Ocean and Coastal Management, 2023, 237: 106515. doi: 10.1016/j.ocecoaman.2023.106515 [11] 马枫, 陈晨, 刘佳仑, 等. 船岸协同支持下的内河船舶远程驾控系统关键技术研究[J]. 中国舰船研究, 2022, 17(5): 125-133.MA Feng, CHEN Chen, LIU Jia-lun, et al. Key technologies of ship remote control system in inland waterways under ship-shore cooperation conditions[J]. Chinese Journal of Ship Research, 2022, 17(5): 125-133. [12] OUAFIQ E M, SAADANE R, CHEHRI A, et al. AI-based modeling and data-driven evaluation for smart farming-oriented big data architecture using IoT with energy harvesting capabilities sustainable energy technologies and assessments[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102093. doi: 10.1016/j.seta.2022.102093 [13] LAZAROWSKA A. A discrete planning approach in collision avoidance for smart ships[J]. Procedia Computer Science, 2020, 176: 380-389. doi: 10.1016/j.procs.2020.08.039 [14] 王启扬. 面向智能船舶远程驾驶的数据加密技术研究[D]. 大连: 大连海事大学, 2022.WANG Qi-yang. Research on data encryption technology for intelligent ship remote navigation[D]. Dalian: Dalian Maritime University, 2022. [15] GHADERI H. Autonomous technologies in short sea shipping: trends, feasibility and implications[J]. Transport Reviews, 2019, 39: 152-73. doi: 10.1080/01441647.2018.1502834 [16] YOU X, MA F, LU S, et al. An integrated platform for the development of autonomous and remote-control ships[C]//TUHH. Proceedings of the 19th Conference on Computer and IT Applications in the Maritime Industries (COMPIT 2020). Pontignano: TUHH, 2020: 316-327. [17] 李明卉. 中国《海商法》对无人船远程操控人的适用问题研究[D]. 大连: 大连海事大学, 2020.LI Ming-hui. Research of the application of unmanned ship remote operator under Chinese maritime code[D]. Dalian: Dalian Maritime University, 2020. [18] AHMED N, ISLAM A U, BORA K C. Suitable site selection of water atms (basis of interior/exterior conditions) using graph theory[J]. Journal of Cases on Information Technology, 2022, 24(1): 1-10. doi: 10.4018/JCIT.306244 [19] LIU C G, CHU X M, WU W X, et al. Human-machine cooperation research for navigation of maritime autonomous surface ships: a review and consideration[J]. Ocean Engineering, 2022, 246: 110555. doi: 10.1016/j.oceaneng.2022.110555 [20] CHENG T T, UTNE I B, WU B, et al. A novel system-theoretic approach for human—system collaboration safety: case studies on two degrees of autonomy for autonomous ships[J]. Reliability Engineering and System Safety, 2023, 237: 1-16. [21] 李晨, 严新平, 刘佳仑, 等. 船舶远程驾驶人机主从博弈控制方法研究[J]. 交通运输系统工程与信息, 2024, 24(3): 21-31, 74.LI Chen, YAN Xin-ping, LIU Jia-lun, et al. Research on the master-slave game control method of ship remote driving man-machine system[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(3): 21-31, 74. [22] 王玉虎, 刘伟. 一种基于人机融合的态势认知模型[J]. 指挥与控制学报, 2023, 9(1): 76-84. doi: 10.3969/j.issn.2096-0204.2023.01.0076WANG Yu-hu, LIU Wei. A situation cognition model based on human-machine hybrid fusion[J]. Journal of Command and Control, 2023, 9(1): 76-84. doi: 10.3969/j.issn.2096-0204.2023.01.0076 [23] 刘佳仑, 韩成浩, 李诗杰, 等. 智能拖轮研究现状、关键技术与展望[J]. 中国船检, 2022(8): 50-55.LIU Jia-lun, HAN Cheng-hao, LI Shi-jie, et al. Research status, key technologies and prospect of intelligent tugboats[J]. China Ship Survey, 2022(8): 50-55. [24] LIN N, YAN X, LIU J, et al. Towards reliable control takeover in ship remote-control system: a cyber-physical fusion testing approach[J]. Journal of Marine Engineering and Technology, 2025, 24(2): 108-120. doi: 10.1080/20464177.2024.2440171 [25] 李峰, 曾乐, 刘斌, 等. 基于大数据分析的AIS虚拟航标布设技术[J]. 水运工程, 2023(11): 173-179.LI Feng, ZENG Le, LIU Bin, et al. Virtual navigation aid deployment technology by AIS based on big data analysis[J]. Port and Waterway Engineering, 2023(11): 173-179. [26] TAYAMA H, FUKUDA O, YAMAMOTO K, et al. 6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor[J]. IEEE Transactions on Power Delivery, 1995, 10(4): 1718-23. doi: 10.1109/61.473389 [27] 刘智心, 初秀民, 郑茂, 等. 智能船舶船岸协同实验关键技术研究[J]. 交通信息与安全, 2020, 38(2): 63-70.LIU Zhi-xin, CHU Xiu-min, ZHENG Mao, et al. A ship-to-shore cooperative simulation system for intelligent ship[J]. Journal of Transport Information and Safety, 2020, 38(2): 63-70. [28] 郑文琪. 多组网方式下的远程驾驶研究[D]. 成都: 西南交通大学, 2021.ZHENG Wen-qi. Research on remote driving under multi-network mode[D]. Chengdu: Southwest Jiaotong University, 2021. [29] 王远渊, 刘佳仑, 马枫, 等. 智能船舶远程驾驶控制技术研究现状与趋势[J]. 中国舰船研究, 2021, 16(1): 18-31.WANG Yuan-yuan, LIU Jia-lun, MA Feng, et al. Review and prospect ofremote control intelligent ships[J]. Chinese Journal of Ship Research, 2021, 16(1): 18-31. [30] 王知昊, 元海文, 李维娜, 等. 交汇水域船舶轨迹预测与航行意图识别[J]. 交通信息与安全, 2022, 40(4): 101-109.WANG Zhi-hao, YUAN Hai-wen, LI Wei-na, et al. Trajectory prediction and intention identification of ships in confluence waters[J]. Journal of Transport Information and Safety, 2022, 40(4): 101-109. -
下载: