留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外与疲劳荷载交替作用下桥梁缆索开裂HDPE护套水分扩散规律

孟庆领 段昊辰 王宝林 郭晓宇 王海良 张鹤

孟庆领, 段昊辰, 王宝林, 郭晓宇, 王海良, 张鹤. 紫外与疲劳荷载交替作用下桥梁缆索开裂HDPE护套水分扩散规律[J]. 交通运输工程学报, 2025, 25(2): 235-251. doi: 10.19818/j.cnki.1671-1637.2025.02.015
引用本文: 孟庆领, 段昊辰, 王宝林, 郭晓宇, 王海良, 张鹤. 紫外与疲劳荷载交替作用下桥梁缆索开裂HDPE护套水分扩散规律[J]. 交通运输工程学报, 2025, 25(2): 235-251. doi: 10.19818/j.cnki.1671-1637.2025.02.015
MENG Qing-ling, DUAN Hao-chen, WANG Bao-lin, GUO Xiao-yu, WANG Hai-liang, ZHANG He. Moisture diffusion law of cracked HDPE sheath for bridge cables under alternating action of ultraviolet and fatigue loads[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 235-251. doi: 10.19818/j.cnki.1671-1637.2025.02.015
Citation: MENG Qing-ling, DUAN Hao-chen, WANG Bao-lin, GUO Xiao-yu, WANG Hai-liang, ZHANG He. Moisture diffusion law of cracked HDPE sheath for bridge cables under alternating action of ultraviolet and fatigue loads[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 235-251. doi: 10.19818/j.cnki.1671-1637.2025.02.015

紫外与疲劳荷载交替作用下桥梁缆索开裂HDPE护套水分扩散规律

doi: 10.19818/j.cnki.1671-1637.2025.02.015
基金项目: 

国家自然科学基金项目 52108163

国家自然科学基金项目 52208194

天津市自然科学基金重点项目 23JCZDJC00510

江西省交通运输厅科技项目 2021H0006

江西省交通运输厅科技项目 2022H0026

详细信息
    作者简介:

    孟庆领(1987-),男,河北廊坊人,天津城建大学副教授,工学博士,从事桥梁长期性能与耐久性研究

    通讯作者:

    王宝林(1984-),男,河南新乡人,天津市交通科学研究院高级工程师

  • 中图分类号: U443.38

Moisture diffusion law of cracked HDPE sheath for bridge cables under alternating action of ultraviolet and fatigue loads

Funds: 

National Natural Science Foundation of China 52108163

National Natural Science Foundation of China 52208194

Natural Science Foundation Key Program of Tianjin 23JCZDJC00510

Science and Technology Project of Jiangxi Provincial Department of Transportation 2021H0006

Science and Technology Project of Jiangxi Provincial Department of Transportation 2022H0026

More Information
    Corresponding author: WANG Bao-lin (1984-), male, senior engineer, 154674560@qq.com
Article Text (Baidu Translation)
  • 摘要: 为揭示服役过程中缆索承重体系桥梁索体开裂高密度聚乙烯(HDPE)护套的水分扩散机理,首先对预制槽护套施加紫外与疲劳荷载交替作用以获得疲劳裂纹,在此基础上开展了开裂护套水分扩散试验,定义了护套等效裂纹面积,揭示了水分扩散通量与扩散系数变化规律。研究结果表明:单一紫外作用未显著改变开裂护套的水分扩散行为,而在单一疲劳荷载作用下,当疲劳加载次数从4.50×104增加至1.35×105时,水分扩散通量与扩散系数均增加了6.16%,当试件开裂面积较小时,护套的水分扩散性主要受疲劳荷载作用的影响;考虑紫外与疲劳荷载交替作用时,相比于单一疲劳荷载作用,1次交替与2次交替作用下,水分扩散通量与扩散系数均分别增加4.80%与8.57%,两者交替作用顺序亦会影响开裂护套水分扩散规律,先施加紫外作用可增强疲劳荷载作用效应,相同疲劳加载次数下水分扩散通量与扩散系数均可提升8.42%,而后施加紫外作用的试件在1次交替作用时与单一疲劳荷载作用结果相近,在2次交替作用时仅提升4.49%。可见,考虑单一紫外或疲劳荷载作用不足以充分解释缆索开裂护套服役过程中的水分扩散规律,预测索体内部水分累计规律需综合考虑紫外与疲劳荷载的耦合作用,该研究成果可为桥梁缆索的维护和修补提供依据,以延长索承桥梁寿命。

     

  • 图  1  试验流程

    Figure  1.  Experimental procedure

    图  2  1B型(哑铃型)多用途标准HDPE试件(单位:mm)

    Figure  2.  1B-shaped (dumbbell-shaped) multipurpose standard HDPE specimen (unit: mm)

    图  3  HDPE试件拉伸应力-应变曲线

    Figure  3.  Tensile stress-strain curve of HDPE specimen

    图  4  预制槽HDPE试件尺寸及开槽端部裂纹扩展示意

    Figure  4.  Dimensions of prefabricated slot HDPE specimens and schematic of crack propagation at slot end

    图  5  试件夹持区

    Figure  5.  Specimen gripping areas

    图  6  水分采集仓

    Figure  6.  Moisture collection chamber

    图  7  水分采集仓吸水能力测试

    Figure  7.  Moisture absorption capacity test on moisture collection chamber

    图  8  试件预制槽封堵

    Figure  8.  Prefabricated slot sealing in specimen

    图  9  封堵预制槽试验结果

    Figure  9.  Experimental results of sealing prefabricated slot

    图  10  等效裂纹面积模型

    Figure  10.  Equivalent crack area model

    图  11  单一紫外作用下试件SEM图像

    Figure  11.  Specimen SEM images under only ultraviolet effect

    图  12  各工况下HDPE试件表面裂纹SEM图像

    Figure  12.  SEM images of HDPE specimen surface cracks under various conditions

    图  13  开裂试件裂纹处微观结构SEM图像

    Figure  13.  SEM images of microstructure at crack of cracked specimen

    图  14  不同工况下试件裂纹面积变化

    Figure  14.  Crack area variations of specimens under different conditions

    图  15  FA-2与FA-3工况下试件SEM图像对比

    Figure  15.  Comparison of SEM images of specimens under FA-2 and FA-3 conditions

    图  16  试件水分采集仓质量增量

    Figure  16.  Mass increments in specimen moisture collection chamber

    图  17  索体水分扩散

    Figure  17.  Cable moisture diffusion

    图  18  水分扩散通量与水分扩散系数-等效裂纹面积曲线

    Figure  18.  Moisture diffusion flux and moisture diffusion coefficient-equivalent crack area curves

    图  19  试件水分扩散通量

    Figure  19.  Specimen moisture diffusion flux

    图  20  试件水分扩散系数

    Figure  20.  Specimen moisture diffusion coefficient

    图  21  试件水分扩散通量与扩散系数拟合曲线斜率变化

    Figure  21.  Fitted curve slope variations of specimen moisture diffusion flux and diffusion coefficient

    表  1  名词解释

    Table  1.   Term explanation

    单一因素作用 试件仅受A或F
    双因素单次交替作用 试件受到A与F的交替作用,且交替顺序为A-F或F-A
    双因素2次交替作用 试件受到A与F的交替作用,且交替顺序为A-F-A-F或F-A-F-A
    下载: 导出CSV

    表  2  HDPE试件力学性能测试

    Table  2.   Mechanical property testing of HDPE specimens

    名称 屈服强度/MPa 弹性模量/MPa 拉伸断裂标称应变/%
    样品1 32.10 1 220 52
    样品2 31.80 1 180 54
    样品3 32.20 1 250 55
    平均值 32.03 1 217 54
    下载: 导出CSV

    表  3  预制槽HDPE试件尺寸

    Table  3.   Dimensions of prefabricated slot HDPE specimens mm

    试件尺寸 开槽尺寸
    L W H WC LC
    250 70 10 1.5 40
    下载: 导出CSV

    表  4  仅考虑紫外或疲劳荷载作用单一因素试验工况

    Table  4.   Test conditions only with ultraviolet or fatigue load

    工况组A的老化时间/h A-1 120
    A-2 240
    A-3 360
    工况组F的疲劳加载次数 F-1 4.50×104
    F-2 9.00×104
    F-3 1.35×105
    下载: 导出CSV

    表  5  考虑紫外与疲劳荷载作用单次交替作用试验工况

    Table  5.   Test conditions with single alternating action of ultraviolet and fatigue load

    工况组编号 试验编号 试验顺序 老化时间/h 疲劳加载次数
    AF-Ⅰ AF-1 A-F 120 1.35 ×105
    AF-2 240 1.35 ×105
    AF-3 360 1.35 ×105
    FA-Ⅱ AF-4 A-F 240 9.00×104
    AF-5 240 4.50 ×104
    AF-6 240 1.35 ×105
    FA-Ⅰ FA-1 F-A 120 1.35 ×105
    FA-2 240 1.35 ×105
    FA-3 360 1.35 ×105
    AF-Ⅱ FA-4 F-A 240 9.00×104
    FA-5 240 4.50×104
    FA-6 240 1.35 ×105
    下载: 导出CSV

    表  6  考虑紫外与疲劳荷载作用2次交替作用试验工况

    Table  6.   Test conditions with two alternating actions of ultraviolet and fatigue load

    工况组编号 试验编号 试验顺序 老化时间/h 疲劳加载次数/104
    AFAF-Ⅰ AFAF-1 A-F-A-F 60×2 6.75×2
    AFAF-2 120×2 6.75×2
    AFAF-3 180×2 6.75×2
    AFAF-Ⅱ AFAF-4 A-F-A-F 120×2 4.50×2
    AFAF-5 120×2 2.25×2
    AFAF-6 120×2 6.75×2
    FAFA-Ⅰ FAFA-1 F-A-F-A 60×2 6.75×2
    FAFA-2 120×2 6.75×2
    FAFA-3 180×2 6.75×2
    FAFA-Ⅱ FAFA-4 F-A-F-A 120×2 4.50×2
    FAFA-5 120×2 2.25×2
    FAFA-6 120×2 6.75×2
    下载: 导出CSV

    表  7  单一紫外或疲劳荷载作用下水分采集仓质量增量变化率

    Table  7.   Moisture collection chamber mass increment rates under only ultraviolet or fatigue load %

    组别 工况组A 工况组F
    1 0.00 14.36
    2 0.00 16.79
    3 0.01 24.09
    下载: 导出CSV

    表  8  紫外与疲劳荷载单次交替作用下水分采集仓质量增量变化率

    Table  8.   Moisture collection chamber mass increment rates under single alternating action of ultraviolet and fatigue load %

    组别 工况组AF-Ⅰ 工况组AF-Ⅱ 工况组FA-Ⅰ 工况组FA-Ⅱ
    1 25.55 14.36 24.33 14.11
    2 28.47 16.30 25.79 15.33
    3 32.36 28.47 26.52 25.79
    下载: 导出CSV

    表  9  紫外与疲劳荷载2次交替作用下水分采集仓质量增量变化率

    Table  9.   Moisture collection chamber mass increment rates under two alternating actions of ultraviolet and fatigue loads %

    组别 工况组AFAF-Ⅰ 工况组AFAF-Ⅱ 工况组FAFA-Ⅰ 工况组FAFA-Ⅱ
    1 27.98 15.82 26.27 15.57
    2 34.06 18.98 31.87 18.01
    3 38.93 34.06 36.25 31.87
    下载: 导出CSV

    表  10  紫外及疲劳荷载2次交替作用与单次交替作用下试件水分扩散通量与扩散系数变化率

    Table  10.   Moisture diffusion fluxes and diffusion coefficient variation rates of specimens under two alternating actions of ultraviolet and fatigue loads compared to single alternating action %

    组别 AFAF-Ⅰ与AF-Ⅰ FAFA-Ⅰ与FA-Ⅰ AFAF-Ⅱ与AF-Ⅱ FAFA-Ⅱ与FA-Ⅱ
    组1 1.98 0.76 3.96 4.48
    组2 2.67 2.34 4.31 5.17
    组3 3.60 5.28 0.94 4.49
    下载: 导出CSV
  • [1] LI H, OU J P. The state of the art in structural health monitoring of cable-stayed bridges[J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 43-67. doi: 10.1007/s13349-015-0115-x
    [2] DAN D H, CHENG W, SUN L M, et al. Fatigue durability study of high density polyethylene stay cable sheathing[J]. Construction and Building Materials, 2016, 111: 474-481. doi: 10.1016/j.conbuildmat.2016.02.109
    [3] CHEN Z H, CHEN H Y, LIU H B, et al. Corrosion behavior of different cables of large-span building structures in different environments[J]. Journal of Materials in Civil Engineering, 2020, 32(11): 04020345. doi: 10.1061/(ASCE)MT.1943-5533.0003428
    [4] WANG X X, CHEN Z H, LIU H B, et al. Experimental study on stress relaxation properties of structural cables[J]. Construction and Building Materials, 2018, 175: 777-789. doi: 10.1016/j.conbuildmat.2018.04.224
    [5] MORGADO T L M, SOUSA E BRITO A. A failure analysis study of a prestressed steel cable of a suspension bridge[J]. Case Studies in Construction Materials, 2015, 3: 40-47. doi: 10.1016/j.cscm.2015.04.001
    [6] FURUYA K, KITAGAWA M, NAKAMURA S, et al. Corrosion mechanism and protection methods for suspension bridge cables[J]. Structural Engineering International, 2000, 10(3): 189-193. doi: 10.2749/101686600780481518
    [7] HAMILTON H R, BREEN J E, FRANK K H. Bridge stay cable corrosion protection. Ⅱ: accelerated corrosion tests[J]. Journal of Bridge Engineering, 1998, 3(2): 72-81. doi: 10.1061/(ASCE)1084-0702(1998)3:2(72)
    [8] MALJAARS J, VROUWENVELDER T. Fatigue failure analysis of stay cables with initial defects: Ewijk bridge case study[J]. Structural Safety, 2014, 51: 47-56. doi: 10.1016/j.strusafe.2014.05.007
    [9] DAN D H, SUN L M, GUO Y H, et al. Study on the mechanical properties of stay cable HDPE sheathing fatigue in dynamic bridge environments[J]. Polymers, 2015, 7(8): 1564-1576. doi: 10.3390/polym7081470
    [10] FAN Z Y, YE Q W, XU X, et al. Fatigue reliability-based replacement strategy for bridge stay cables: a case study in China[J]. Structures, 2022, 39: 1176-1188. doi: 10.1016/j.istruc.2022.03.093
    [11] CARRASCO F, PAGÈS P, PASCUAL S, et al. Artificial aging of high-density polyethylene by ultraviolet irradiation[J]. European Polymer Journal, 2001, 37(7): 1457-1464. doi: 10.1016/S0014-3057(00)00251-2
    [12] LI Y L, LIU W L, REN X C. Critical stress of high-density polyethylene during stress and photo-oxidative aging[J]. Polymer Engineering & Science, 2015, 55(10): 2277-2284.
    [13] GONG Y, WANG S H, ZHANG Z Y, et al. Degradation of sunlight exposure on the high-density polyethylene (HDPE) pipes for transportation of natural gases[J]. Polymer Degradation and Stability, 2021, 194: 109752. doi: 10.1016/j.polymdegradstab.2021.109752
    [14] RODRIGUEZ A K, MANSOOR B, AYOUB G, et al. Effect of UV-aging on the mechanical and fracture behavior of low density polyethylene[J]. Polymer Degradation and Stability, 2020, 180: 109185. doi: 10.1016/j.polymdegradstab.2020.109185
    [15] GRIGORIADOU I, PARASKEVOPOULOS K M, CHRISSAFIS K, et al. Effect of different nanoparticles on HDPE UV stability[J]. Polymer Degradation and Stability, 2011, 96(1): 151-163. doi: 10.1016/j.polymdegradstab.2010.10.001
    [16] QI Z P, HU N, ZENG D, et al. Failure of high density polyethylene under cyclic loading: mechanism analysis and mode prediction[J]. International Journal of Mechanical Sciences, 2019, 156: 46-58. doi: 10.1016/j.ijmecsci.2019.03.021
    [17] DJEBLI A, BENDOUBA M, AID A, et al. Experimental analysis and damage modeling of high-density polyethylene under fatigue loading[J]. Acta Mechanica Solida Sinica, 2016, 29(2): 133-144. doi: 10.1016/S0894-9166(16)30102-1
    [18] HUANG Z Y, LI Y L, REN X C. Comparing cracking time and structure changes of different high-density polyethylenes during stress and photo-oxidative aging[J]. Journal of Applied Polymer Science, 2014, 131(20): 40904. doi: 10.1002/app.40904
    [19] WEE J W, CHOI B H. Prediction of discontinuous fatigue crack growth in high density polyethylene based on the crack layer theory with variable crack layer parameters[J]. International Journal of Fatigue, 2016, 92: 304-312. doi: 10.1016/j.ijfatigue.2016.07.017
    [20] QI Z P, HU N, LI Z A, et al. A stress-based model for fatigue life prediction of high density polyethylene under complicated loading conditions[J]. International Journal of Fatigue, 2019, 119: 281-289. doi: 10.1016/j.ijfatigue.2018.10.007
    [21] ALMOMANI A, MOURAD A H I, DEVECI S. Effect of the crack layer theory parameters on the discontinuous slow crack growth of high density polyethylene under fatigue loading[J]. International Journal of Solids and Structures, 2024, 286/287: 112579. doi: 10.1016/j.ijsolstr.2023.112579
    [22] WEE J W, KIM I, CHOI M S, et al. Characterization and modeling of slow crack growth behaviors of defective high-density polyethylene pipes using stiff-constant K specimen[J]. Polymer Testing, 2020, 86: 106499. doi: 10.1016/j.polymertesting.2020.106499
    [23] PINTER G, HAAGER M, BALIKA W, et al. Cyclic crack growth tests with CRB specimens for the evaluation of the long-term performance of PE pipe grades[J]. Polymer Testing, 2007, 26(2): 180-188. doi: 10.1016/j.polymertesting.2006.09.010
    [24] AKHAVAN A, SHAFAATIAN S M H, RAJABIPOUR F. Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars[J]. Cement and Concrete Research, 2012, 42(2): 313-320. doi: 10.1016/j.cemconres.2011.10.002
    [25] FRANCHINI M, LANZA L. Leakages in pipes: generalizing Torricelli's equation to deal with different elastic materials, diameters and orifice shape and dimensions[J]. Urban Water Journal, 2014, 11(8): 678-695. doi: 10.1080/1573062X.2013.868496
    [26] ALI SADR-AL-SADATI S, JALILI GHAZIZADEH M. The experimental and numerical study of water leakage from High-Density Polyethylene pipes at elevated temperatures[J]. Polymer Testing, 2019, 74: 274-280. doi: 10.1016/j.polymertesting.2019.01.014
    [27] PARK S S, KWON S J, JUNG S H. Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation[J]. Construction and Building Materials, 2012, 29: 183-192. doi: 10.1016/j.conbuildmat.2011.09.019
    [28] JANG S Y, KIM B S, OH B H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests[J]. Cement and Concrete Research, 2011, 41(1): 9-19. doi: 10.1016/j.cemconres.2010.08.018
    [29] GUO R, LI C G, XIAN G J. Water absorption and long-term thermal and mechanical properties of carbon/glass hybrid rod for bridge cable[J]. Engineering Structures, 2023, 274: 115176. doi: 10.1016/j.engstruct.2022.115176
    [30] DE MIRANDA S, MOLARI L, SCALET G, et al. Simple beam model to estimate leakage in longitudinally cracked pressurized pipes[J]. Journal of Structural Engineering, 2012, 138(8): 1065-1074. doi: 10.1061/(ASCE)ST.1943-541X.0000535
    [31] LI D S, OU J P, LAN C M, et al. Monitoring and failure analysis of corroded bridge cables under fatigue loading using acoustic emission sensors[J]. Sensors, 2012, 12(4): 3901-3915. doi: 10.3390/s120403901
    [32] 范厚彬, 田浩, 曹素功, 等. 悬索桥主缆内部温湿度变化机理模型试验研究[J]. 桥梁建设, 2017, 47(2): 42-47.

    FAN Hou-bin, TIAN Hao, CAO Su-gong, et al. Model test study of change mechanism of temperatures and humidity in main cable of suspension bridge[J]. Bridge Construction, 2017, 47(2): 42-47.
    [33] 魏子杰, 彭福胜, 缪小平, 等. 悬索桥主缆通风除湿数值计算及实验研究[J]. 工程热物理学报, 2016, 37(12): 2495-2501.

    WEI Zi-jie, PENG Fu-sheng, MIAO Xiao-ping, et al. Numerical calculation and experiment on the dehumidification system for main cable of suspension bridge[J]. Journal of Engineering Thermophysics, 2016, 37(12): 2495-2501.
    [34] WANG Y, ZHENG Y Q, ZHANG W H, et al. Analysis on damage evolution and corrosion fatigue performance of high-strength steel wire for bridge cable: experiments and numerical simulation[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102571. doi: 10.1016/j.tafmec.2020.102571
    [35] WANG Y, ZHANG W H, PAN X, et al. Experimental study on fatigue crack propagation of high-strength steel wire with initial defects for bridge cables[J]. Applied Sciences, 2020, 10(12): 4065. doi: 10.3390/app10124065
    [36] AINALI N M, BIKIARIS D N, LAMBROPOULOU D A. Aging effects on low-and high-density polyethylene, polypropylene and polystyrene under UV irradiation: an insight into decomposition mechanism by Py-GC/MS for microplastic analysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105207. doi: 10.1016/j.jaap.2021.105207
    [37] 罗蓉, 柳子尧, 黄婷婷, 等. 冻融循环对沥青混合料内水气扩散的影响[J]. 中国公路学报, 2018, 31(9): 20-26, 64.

    LUO Rong, LIU Zi-yao, HUANG Ting-ting, et al. Effect of freezing-thawing cycles on water vapor diffusion in asphalt mixtures[J]. China Journal of Highway and Transport, 2018, 31(9): 20-26, 64.
    [38] 柳子尧. 沥青混合料穿透型水气扩散影响因素研究[D]. 武汉: 武汉理工大学, 2018.

    LIU Zi-yao. Study of the influence factors of water vapor passing through asphalt mixtures[D]. Wuhan: Wuhan University of Technology, 2018.
    [39] 黄婷婷. 沥青混合料内部积聚型水气运动机理研究[D]. 武汉: 武汉理工大学, 2018.

    HUANG Ting-ting. Investigation on mechanism of water vapor diffusion in asphalt mixtures[D]. Wuhan: Wuhan University of Technology, 2018.
    [40] MENGEL L, KRAUSS H W, LOWKE D. Water transport through cracks in plain and reinforced concrete-influencing factors and open questions[J]. Construction and Building Materials, 2020, 254: 118990. doi: 10.1016/j.conbuildmat.2020.118990
  • 加载中
图(21) / 表(10)
计量
  • 文章访问数:  547
  • HTML全文浏览量:  73
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回