Moisture diffusion law of cracked HDPE sheath for bridge cables under alternating action of ultraviolet and fatigue loads
-
摘要: 为揭示服役过程中缆索承重体系桥梁索体开裂高密度聚乙烯(HDPE)护套的水分扩散机理,首先对预制槽护套施加紫外与疲劳荷载交替作用以获得疲劳裂纹,在此基础上开展了开裂护套水分扩散试验,定义了护套等效裂纹面积,揭示了水分扩散通量与扩散系数变化规律。研究结果表明:单一紫外作用未显著改变开裂护套的水分扩散行为,而在单一疲劳荷载作用下,当疲劳加载次数从4.50×104增加至1.35×105时,水分扩散通量与扩散系数均增加了6.16%,当试件开裂面积较小时,护套的水分扩散性主要受疲劳荷载作用的影响;考虑紫外与疲劳荷载交替作用时,相比于单一疲劳荷载作用,1次交替与2次交替作用下,水分扩散通量与扩散系数均分别增加4.80%与8.57%,两者交替作用顺序亦会影响开裂护套水分扩散规律,先施加紫外作用可增强疲劳荷载作用效应,相同疲劳加载次数下水分扩散通量与扩散系数均可提升8.42%,而后施加紫外作用的试件在1次交替作用时与单一疲劳荷载作用结果相近,在2次交替作用时仅提升4.49%。可见,考虑单一紫外或疲劳荷载作用不足以充分解释缆索开裂护套服役过程中的水分扩散规律,预测索体内部水分累计规律需综合考虑紫外与疲劳荷载的耦合作用,该研究成果可为桥梁缆索的维护和修补提供依据,以延长索承桥梁寿命。Abstract: To reveal the moisture diffusion mechanism of cracked high density polyethylene (HDPE) sheaths in cable-bearing systems of bridges in service, prefabricated-slot sheaths were subjected to alternating ultraviolet and fatigue loads to generate fatigue cracks. Based on this, moisture diffusion tests on cracked sheaths were conducted, the equivalent crack area of the sheath was defined, and the variation laws of moisture diffusion flux and diffusion coefficient were revealed. Research results show that only ultraviolet exposure does not significantly change the moisture diffusion behavior of the cracked sheath. In contrast, when the fatigue load cycles increase from 4.50×104 to 1.35×105, the moisture diffusion flux and diffusion coefficient both increase by 6.16% under only fatigue load. When the crack area of the specimen is small, the moisture diffusivity of the sheath is mainly influenced by fatigue load. Considering alternating ultraviolet and fatigue loads, compared to only fatigue loads, single and two alternating actions can increase the moisture diffusion flux and diffusion coefficient by 4.80% and 8.57%, respectively. The sequence of alternating actions also affects the moisture diffusion law in the cracked sheath. Ultraviolet conducted at first can enhance the effect of fatigue load, increasing the moisture diffusion flux and diffusion coefficient by 8.42% under the same fatigue load cycles. When ultraviolet exposure is applied later, the results for single alternating action are similar to those under only fatigue loads, while two alternating actions only increase the values by 4.49%. Therefore, it is considered that only ultraviolet or fatigue loads are insufficient to fully explain the moisture diffusion law in cracked sheaths during service. Predicting the moisture accumulation law within the cable sheath requires a comprehensive consideration of the coupled effects of ultraviolet and fatigue loads. These findings can provide a basis for the maintenance and repair of bridge cables, thereby extending the service life of cable-supported bridges.
-
表 1 名词解释
Table 1. Term explanation
单一因素作用 试件仅受A或F 双因素单次交替作用 试件受到A与F的交替作用,且交替顺序为A-F或F-A 双因素2次交替作用 试件受到A与F的交替作用,且交替顺序为A-F-A-F或F-A-F-A 表 2 HDPE试件力学性能测试
Table 2. Mechanical property testing of HDPE specimens
名称 屈服强度/MPa 弹性模量/MPa 拉伸断裂标称应变/% 样品1 32.10 1 220 52 样品2 31.80 1 180 54 样品3 32.20 1 250 55 平均值 32.03 1 217 54 表 3 预制槽HDPE试件尺寸
Table 3. Dimensions of prefabricated slot HDPE specimens mm
试件尺寸 开槽尺寸 L W H WC LC 250 70 10 1.5 40 表 4 仅考虑紫外或疲劳荷载作用单一因素试验工况
Table 4. Test conditions only with ultraviolet or fatigue load
工况组A的老化时间/h A-1 120 A-2 240 A-3 360 工况组F的疲劳加载次数 F-1 4.50×104 F-2 9.00×104 F-3 1.35×105 表 5 考虑紫外与疲劳荷载作用单次交替作用试验工况
Table 5. Test conditions with single alternating action of ultraviolet and fatigue load
工况组编号 试验编号 试验顺序 老化时间/h 疲劳加载次数 AF-Ⅰ AF-1 A-F 120 1.35 ×105 AF-2 240 1.35 ×105 AF-3 360 1.35 ×105 FA-Ⅱ AF-4 A-F 240 9.00×104 AF-5 240 4.50 ×104 AF-6 240 1.35 ×105 FA-Ⅰ FA-1 F-A 120 1.35 ×105 FA-2 240 1.35 ×105 FA-3 360 1.35 ×105 AF-Ⅱ FA-4 F-A 240 9.00×104 FA-5 240 4.50×104 FA-6 240 1.35 ×105 表 6 考虑紫外与疲劳荷载作用2次交替作用试验工况
Table 6. Test conditions with two alternating actions of ultraviolet and fatigue load
工况组编号 试验编号 试验顺序 老化时间/h 疲劳加载次数/104 AFAF-Ⅰ AFAF-1 A-F-A-F 60×2 6.75×2 AFAF-2 120×2 6.75×2 AFAF-3 180×2 6.75×2 AFAF-Ⅱ AFAF-4 A-F-A-F 120×2 4.50×2 AFAF-5 120×2 2.25×2 AFAF-6 120×2 6.75×2 FAFA-Ⅰ FAFA-1 F-A-F-A 60×2 6.75×2 FAFA-2 120×2 6.75×2 FAFA-3 180×2 6.75×2 FAFA-Ⅱ FAFA-4 F-A-F-A 120×2 4.50×2 FAFA-5 120×2 2.25×2 FAFA-6 120×2 6.75×2 表 7 单一紫外或疲劳荷载作用下水分采集仓质量增量变化率
Table 7. Moisture collection chamber mass increment rates under only ultraviolet or fatigue load
% 组别 工况组A 工况组F 1 0.00 14.36 2 0.00 16.79 3 0.01 24.09 表 8 紫外与疲劳荷载单次交替作用下水分采集仓质量增量变化率
Table 8. Moisture collection chamber mass increment rates under single alternating action of ultraviolet and fatigue load
% 组别 工况组AF-Ⅰ 工况组AF-Ⅱ 工况组FA-Ⅰ 工况组FA-Ⅱ 1 25.55 14.36 24.33 14.11 2 28.47 16.30 25.79 15.33 3 32.36 28.47 26.52 25.79 表 9 紫外与疲劳荷载2次交替作用下水分采集仓质量增量变化率
Table 9. Moisture collection chamber mass increment rates under two alternating actions of ultraviolet and fatigue loads
% 组别 工况组AFAF-Ⅰ 工况组AFAF-Ⅱ 工况组FAFA-Ⅰ 工况组FAFA-Ⅱ 1 27.98 15.82 26.27 15.57 2 34.06 18.98 31.87 18.01 3 38.93 34.06 36.25 31.87 表 10 紫外及疲劳荷载2次交替作用与单次交替作用下试件水分扩散通量与扩散系数变化率
Table 10. Moisture diffusion fluxes and diffusion coefficient variation rates of specimens under two alternating actions of ultraviolet and fatigue loads compared to single alternating action
% 组别 AFAF-Ⅰ与AF-Ⅰ FAFA-Ⅰ与FA-Ⅰ AFAF-Ⅱ与AF-Ⅱ FAFA-Ⅱ与FA-Ⅱ 组1 1.98 0.76 3.96 4.48 组2 2.67 2.34 4.31 5.17 组3 3.60 5.28 0.94 4.49 -
[1] LI H, OU J P. The state of the art in structural health monitoring of cable-stayed bridges[J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 43-67. doi: 10.1007/s13349-015-0115-x [2] DAN D H, CHENG W, SUN L M, et al. Fatigue durability study of high density polyethylene stay cable sheathing[J]. Construction and Building Materials, 2016, 111: 474-481. doi: 10.1016/j.conbuildmat.2016.02.109 [3] CHEN Z H, CHEN H Y, LIU H B, et al. Corrosion behavior of different cables of large-span building structures in different environments[J]. Journal of Materials in Civil Engineering, 2020, 32(11): 04020345. doi: 10.1061/(ASCE)MT.1943-5533.0003428 [4] WANG X X, CHEN Z H, LIU H B, et al. Experimental study on stress relaxation properties of structural cables[J]. Construction and Building Materials, 2018, 175: 777-789. doi: 10.1016/j.conbuildmat.2018.04.224 [5] MORGADO T L M, SOUSA E BRITO A. A failure analysis study of a prestressed steel cable of a suspension bridge[J]. Case Studies in Construction Materials, 2015, 3: 40-47. doi: 10.1016/j.cscm.2015.04.001 [6] FURUYA K, KITAGAWA M, NAKAMURA S, et al. Corrosion mechanism and protection methods for suspension bridge cables[J]. Structural Engineering International, 2000, 10(3): 189-193. doi: 10.2749/101686600780481518 [7] HAMILTON H R, BREEN J E, FRANK K H. Bridge stay cable corrosion protection. Ⅱ: accelerated corrosion tests[J]. Journal of Bridge Engineering, 1998, 3(2): 72-81. doi: 10.1061/(ASCE)1084-0702(1998)3:2(72) [8] MALJAARS J, VROUWENVELDER T. Fatigue failure analysis of stay cables with initial defects: Ewijk bridge case study[J]. Structural Safety, 2014, 51: 47-56. doi: 10.1016/j.strusafe.2014.05.007 [9] DAN D H, SUN L M, GUO Y H, et al. Study on the mechanical properties of stay cable HDPE sheathing fatigue in dynamic bridge environments[J]. Polymers, 2015, 7(8): 1564-1576. doi: 10.3390/polym7081470 [10] FAN Z Y, YE Q W, XU X, et al. Fatigue reliability-based replacement strategy for bridge stay cables: a case study in China[J]. Structures, 2022, 39: 1176-1188. doi: 10.1016/j.istruc.2022.03.093 [11] CARRASCO F, PAGÈS P, PASCUAL S, et al. Artificial aging of high-density polyethylene by ultraviolet irradiation[J]. European Polymer Journal, 2001, 37(7): 1457-1464. doi: 10.1016/S0014-3057(00)00251-2 [12] LI Y L, LIU W L, REN X C. Critical stress of high-density polyethylene during stress and photo-oxidative aging[J]. Polymer Engineering & Science, 2015, 55(10): 2277-2284. [13] GONG Y, WANG S H, ZHANG Z Y, et al. Degradation of sunlight exposure on the high-density polyethylene (HDPE) pipes for transportation of natural gases[J]. Polymer Degradation and Stability, 2021, 194: 109752. doi: 10.1016/j.polymdegradstab.2021.109752 [14] RODRIGUEZ A K, MANSOOR B, AYOUB G, et al. Effect of UV-aging on the mechanical and fracture behavior of low density polyethylene[J]. Polymer Degradation and Stability, 2020, 180: 109185. doi: 10.1016/j.polymdegradstab.2020.109185 [15] GRIGORIADOU I, PARASKEVOPOULOS K M, CHRISSAFIS K, et al. Effect of different nanoparticles on HDPE UV stability[J]. Polymer Degradation and Stability, 2011, 96(1): 151-163. doi: 10.1016/j.polymdegradstab.2010.10.001 [16] QI Z P, HU N, ZENG D, et al. Failure of high density polyethylene under cyclic loading: mechanism analysis and mode prediction[J]. International Journal of Mechanical Sciences, 2019, 156: 46-58. doi: 10.1016/j.ijmecsci.2019.03.021 [17] DJEBLI A, BENDOUBA M, AID A, et al. Experimental analysis and damage modeling of high-density polyethylene under fatigue loading[J]. Acta Mechanica Solida Sinica, 2016, 29(2): 133-144. doi: 10.1016/S0894-9166(16)30102-1 [18] HUANG Z Y, LI Y L, REN X C. Comparing cracking time and structure changes of different high-density polyethylenes during stress and photo-oxidative aging[J]. Journal of Applied Polymer Science, 2014, 131(20): 40904. doi: 10.1002/app.40904 [19] WEE J W, CHOI B H. Prediction of discontinuous fatigue crack growth in high density polyethylene based on the crack layer theory with variable crack layer parameters[J]. International Journal of Fatigue, 2016, 92: 304-312. doi: 10.1016/j.ijfatigue.2016.07.017 [20] QI Z P, HU N, LI Z A, et al. A stress-based model for fatigue life prediction of high density polyethylene under complicated loading conditions[J]. International Journal of Fatigue, 2019, 119: 281-289. doi: 10.1016/j.ijfatigue.2018.10.007 [21] ALMOMANI A, MOURAD A H I, DEVECI S. Effect of the crack layer theory parameters on the discontinuous slow crack growth of high density polyethylene under fatigue loading[J]. International Journal of Solids and Structures, 2024, 286/287: 112579. doi: 10.1016/j.ijsolstr.2023.112579 [22] WEE J W, KIM I, CHOI M S, et al. Characterization and modeling of slow crack growth behaviors of defective high-density polyethylene pipes using stiff-constant K specimen[J]. Polymer Testing, 2020, 86: 106499. doi: 10.1016/j.polymertesting.2020.106499 [23] PINTER G, HAAGER M, BALIKA W, et al. Cyclic crack growth tests with CRB specimens for the evaluation of the long-term performance of PE pipe grades[J]. Polymer Testing, 2007, 26(2): 180-188. doi: 10.1016/j.polymertesting.2006.09.010 [24] AKHAVAN A, SHAFAATIAN S M H, RAJABIPOUR F. Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars[J]. Cement and Concrete Research, 2012, 42(2): 313-320. doi: 10.1016/j.cemconres.2011.10.002 [25] FRANCHINI M, LANZA L. Leakages in pipes: generalizing Torricelli's equation to deal with different elastic materials, diameters and orifice shape and dimensions[J]. Urban Water Journal, 2014, 11(8): 678-695. doi: 10.1080/1573062X.2013.868496 [26] ALI SADR-AL-SADATI S, JALILI GHAZIZADEH M. The experimental and numerical study of water leakage from High-Density Polyethylene pipes at elevated temperatures[J]. Polymer Testing, 2019, 74: 274-280. doi: 10.1016/j.polymertesting.2019.01.014 [27] PARK S S, KWON S J, JUNG S H. Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation[J]. Construction and Building Materials, 2012, 29: 183-192. doi: 10.1016/j.conbuildmat.2011.09.019 [28] JANG S Y, KIM B S, OH B H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests[J]. Cement and Concrete Research, 2011, 41(1): 9-19. doi: 10.1016/j.cemconres.2010.08.018 [29] GUO R, LI C G, XIAN G J. Water absorption and long-term thermal and mechanical properties of carbon/glass hybrid rod for bridge cable[J]. Engineering Structures, 2023, 274: 115176. doi: 10.1016/j.engstruct.2022.115176 [30] DE MIRANDA S, MOLARI L, SCALET G, et al. Simple beam model to estimate leakage in longitudinally cracked pressurized pipes[J]. Journal of Structural Engineering, 2012, 138(8): 1065-1074. doi: 10.1061/(ASCE)ST.1943-541X.0000535 [31] LI D S, OU J P, LAN C M, et al. Monitoring and failure analysis of corroded bridge cables under fatigue loading using acoustic emission sensors[J]. Sensors, 2012, 12(4): 3901-3915. doi: 10.3390/s120403901 [32] 范厚彬, 田浩, 曹素功, 等. 悬索桥主缆内部温湿度变化机理模型试验研究[J]. 桥梁建设, 2017, 47(2): 42-47.FAN Hou-bin, TIAN Hao, CAO Su-gong, et al. Model test study of change mechanism of temperatures and humidity in main cable of suspension bridge[J]. Bridge Construction, 2017, 47(2): 42-47. [33] 魏子杰, 彭福胜, 缪小平, 等. 悬索桥主缆通风除湿数值计算及实验研究[J]. 工程热物理学报, 2016, 37(12): 2495-2501.WEI Zi-jie, PENG Fu-sheng, MIAO Xiao-ping, et al. Numerical calculation and experiment on the dehumidification system for main cable of suspension bridge[J]. Journal of Engineering Thermophysics, 2016, 37(12): 2495-2501. [34] WANG Y, ZHENG Y Q, ZHANG W H, et al. Analysis on damage evolution and corrosion fatigue performance of high-strength steel wire for bridge cable: experiments and numerical simulation[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102571. doi: 10.1016/j.tafmec.2020.102571 [35] WANG Y, ZHANG W H, PAN X, et al. Experimental study on fatigue crack propagation of high-strength steel wire with initial defects for bridge cables[J]. Applied Sciences, 2020, 10(12): 4065. doi: 10.3390/app10124065 [36] AINALI N M, BIKIARIS D N, LAMBROPOULOU D A. Aging effects on low-and high-density polyethylene, polypropylene and polystyrene under UV irradiation: an insight into decomposition mechanism by Py-GC/MS for microplastic analysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105207. doi: 10.1016/j.jaap.2021.105207 [37] 罗蓉, 柳子尧, 黄婷婷, 等. 冻融循环对沥青混合料内水气扩散的影响[J]. 中国公路学报, 2018, 31(9): 20-26, 64.LUO Rong, LIU Zi-yao, HUANG Ting-ting, et al. Effect of freezing-thawing cycles on water vapor diffusion in asphalt mixtures[J]. China Journal of Highway and Transport, 2018, 31(9): 20-26, 64. [38] 柳子尧. 沥青混合料穿透型水气扩散影响因素研究[D]. 武汉: 武汉理工大学, 2018.LIU Zi-yao. Study of the influence factors of water vapor passing through asphalt mixtures[D]. Wuhan: Wuhan University of Technology, 2018. [39] 黄婷婷. 沥青混合料内部积聚型水气运动机理研究[D]. 武汉: 武汉理工大学, 2018.HUANG Ting-ting. Investigation on mechanism of water vapor diffusion in asphalt mixtures[D]. Wuhan: Wuhan University of Technology, 2018. [40] MENGEL L, KRAUSS H W, LOWKE D. Water transport through cracks in plain and reinforced concrete-influencing factors and open questions[J]. Construction and Building Materials, 2020, 254: 118990. doi: 10.1016/j.conbuildmat.2020.118990 -
下载: