留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

板式无砟轨道充填层快修换填CA砂浆的制备与早强机理

高义 李好新 马聪 杨旭 董必钦 李辉 杜彦良

高义, 李好新, 马聪, 杨旭, 董必钦, 李辉, 杜彦良. 板式无砟轨道充填层快修换填CA砂浆的制备与早强机理[J]. 交通运输工程学报, 2025, 25(2): 311-321. doi: 10.19818/j.cnki.1671-1637.2025.02.020
引用本文: 高义, 李好新, 马聪, 杨旭, 董必钦, 李辉, 杜彦良. 板式无砟轨道充填层快修换填CA砂浆的制备与早强机理[J]. 交通运输工程学报, 2025, 25(2): 311-321. doi: 10.19818/j.cnki.1671-1637.2025.02.020
GAO Yi, LI Hao-xin, MA Cong, YANG Xu, DONG Bi-qin, LI Hui, DU Yan-liang. Preparation and early-strength mechanism of CA mortar for rapid repair and replacement of slab ballastless track filling layer[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 311-321. doi: 10.19818/j.cnki.1671-1637.2025.02.020
Citation: GAO Yi, LI Hao-xin, MA Cong, YANG Xu, DONG Bi-qin, LI Hui, DU Yan-liang. Preparation and early-strength mechanism of CA mortar for rapid repair and replacement of slab ballastless track filling layer[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 311-321. doi: 10.19818/j.cnki.1671-1637.2025.02.020

板式无砟轨道充填层快修换填CA砂浆的制备与早强机理

doi: 10.19818/j.cnki.1671-1637.2025.02.020
基金项目: 

国家重点研发计划 2023YFB2604000

国家自然科学基金项目 52178233

国铁集团重大课题 K2022G038

广东省珠江学者岗位计划资助项目 2021QN02G957

深圳市科技创新专项 JCYJ20240813143059040

深圳市科技创新专项 JCYJ20220531101605012

深圳市科技创新专项 20231121085626001

详细信息
    作者简介:

    高义(1986-),女,山东菏泽人,同济大学博士研究生,从事高性能修复材料研究

    通讯作者:

    马聪(1989-),男,山东菏泽人,深圳大学研究员,工学博士

  • 中图分类号: U415.6

Preparation and early-strength mechanism of CA mortar for rapid repair and replacement of slab ballastless track filling layer

Funds: 

National Key R&D Program of China 2023YFB2604000

National Natural Science Foundation of China 52178233

Major Project of China Railway K2022G038

Project Supported by GDUPS 2021 2021QN02G957

Shenzhen Science and Technology Innovation Special Fund JCYJ20240813143059040

Shenzhen Science and Technology Innovation Special Fund JCYJ20220531101605012

Shenzhen Science and Technology Innovation Special Fund 20231121085626001

More Information
    Corresponding author: MA Cong (1989-), male, research fellow, PhD, msk2017@188.com
Article Text (Baidu Translation)
  • 摘要: 为解决中国高速铁路CRTS Ⅱ型板充填层大修更换问题,开发了满足施工天窗期和早期性能要求的快速硬化水泥乳化沥青(CA)砂浆;分别以磷酸镁水泥和硫铝酸钙水泥混合阳离子乳化沥青制备了磷酸镁水泥基乳化沥青(MCA)砂浆和硫铝酸盐水泥基乳化沥青(SCA)砂浆,采用Bingham模型拟合流变参数,量化浆体屈服应力和塑性黏度,利用动弹性模量测试仪测定7 d弹性模量,通过加速溶蚀试验量化Mg2+/Ca2+溶出速率,结合SEM-EDS微观分析揭示沥青相与水泥水化产物的界面作用机制。研究结果表明:2种体系终凝时间均小于60 min,满足高铁维修天窗期要求;MCA砂浆2 h抗压强度达11.5~29.3 MPa,SCA砂浆为5.1~9.3 MPa,28 d弹性模量均大于7 GPa;随A/C比增加,MCA流动性从170 mm降至140 mm,屈服应力提升至9.284 Pa,而SCA体系的流动性更优,同时SCA砂浆比MCA砂浆表现出更好的体积稳定性及耐水性;微观结构显示沥青膜与鸟粪石、钙矾石相互交织形成致密网络。可见,SCA型CA砂浆在早期强度、耐水性和离子稳定性方面表现更优,可作为CRTS Ⅱ型充填层快修材料的优选方案。

     

  • 图  1  浆体流变参数剪切制度

    Figure  1.  Shear procedures for rheological parameters of slurry

    图  2  动态弹性模量测试

    Figure  2.  Dynamic elastic modulus test

    图  3  MCA与SCA净浆的凝结时间

    Figure  3.  Setting time of MCA and SCA paste

    图  4  MCA与SCA砂浆流动度

    Figure  4.  Fluidities of MCA and SCA mortar

    图  5  MCA与SCA砂浆流变曲线

    Figure  5.  Rheological curves of MCA and SCA mortar

    图  6  MCA与SCA砂浆抗折和抗压强度

    Figure  6.  Flexural and compressive strengths of MCA and SCA mortar

    图  7  7天龄期MCA和SCA的动态弹性模量

    Figure  7.  Dynamic elastic moduli of MCA and SCA at 7 d age

    图  8  MCA与SCA砂浆体积稳定性

    Figure  8.  Volume stabilities of MCA and SCA mortar

    图  9  MCA与SCA砂浆浸水后强度保留系数

    Figure  9.  Strength retention coefficients of MCA and SCA mortar after water soaking

    图  10  累积离子溶出量变化曲线

    Figure  10.  Variation curves of cumulative ion leaching amount

    图  11  在加速溶蚀下的离子溶出速率

    Figure  11.  Ion leaching rates under accelerated leaching

    图  12  MCA与SCA砂浆养护28 d的微观结构

    Figure  12.  Microstructures of MCA and SCA mortar after curing 28 d

    图  13  加速溶蚀后砂浆微观结构

    Figure  13.  Microstructures under accelerated leaching

    表  1  重烧氧化镁的化学组成

    Table  1.   Chemical composition of MgO  %

    SiO2 Al2O3 Fe2O3 MgO CaO Na2O
    4.67 2.12 1.35 89.21 2.65
    下载: 导出CSV

    表  2  SAC的化学组成

    Table  2.   Chemical composition of SAC  %

    SiO2 Al2O3 Fe2O3 MgO CaO K2O SO3 TiO2
    8.74 15.06 1.66 2.27 44.44 0.61 18.07 0.67
    下载: 导出CSV

    表  3  MCA与SCA砂浆基本配比

    Table  3.   Proportions of MCA and SCA mortar

    编号 M/P R/M P/S/% T/S/% A/C W/C
    1 3∶1 0.15 0.0 0.15
    2 3∶1 0.15 0.1 0.15
    3 3∶1 0.15 0.2 0.15
    4 0.1 1 0.0 0.45
    5 0.1 1 0.2 0.45
    6 0.1 1 0.4 0.45
    下载: 导出CSV

    表  4  硝酸铵溶液更换准则

    Table  4.   Replacement criterion of ammonium nitrate solution

    pH值 < 8.1 8.1~ 8.2 8.2~ 8.3 8.3~ 8.4 8.4~ 8.5 >8.5
    更换体积/mL 100 150 250 350 450 500
    下载: 导出CSV

    表  5  MCA与SCA砂浆流变曲线拟合结果

    Table  5.   Rheological curve fitting results of MCA and SCA mortar

    样品编号 τ0/Pa η/(Pa·s) R2
    1 2.460 0.300 0.994
    2 3.870 0.354 0.993
    3 9.284 0.566 0.996
    4 0.930 0.100 0.986
    5 1.604 0.136 0.988
    6 7.828 0.244 0.991
    下载: 导出CSV
  • [1] XIE K Z, DAI W W, WANG Q, et al. Study on the causes of interface damage of CRTS Ⅱ slab ballastless track CA mortar based on grouting operation[J]. Construction and Building Materials, 2024, 438: 137198. doi: 10.1016/j.conbuildmat.2024.137198
    [2] WANG T, WU S L, JIA H Q, et al. Study on physical and mechanical properties of cement asphalt emulsified mortar under track slab[J]. Railway Sciences, 2024, 3(2): 227-238. doi: 10.1108/RS-01-2024-0001
    [3] ROTTA LORIA A F, DEEPANSHU S, GIOVANNI V, et al. Engineering concrete properties and behavior through electrodeposition: a review[J]. Journal of Applied Electrochemistry, 2022, 53(2): 193-215.
    [4] 潘烨, 王志强, 张敏敏, 等. CRTS Ⅱ型板式无砟轨道胀板病害原因及整治措施探讨[J]. 综合运输, 2024, 46(8): 120-125.

    PAN Ye, WANG Zhi-qiang, ZHANG Min-min, et al. Discussion on the cause and remedial measures of CRTS Ⅱ type plate ballast track expanding plate disease[J]. China Transportation Review, 2024, 46(8): 120-125.
    [5] LIU S, JIANG L Z, ZHOU W B, et al. Analysis of the influence of CA mortar layer void on the dynamic performance of high-speed trains[J]. Mechanics Based Design of Structures and Machines, 2024, 52(5): 2605-2622. doi: 10.1080/15397734.2023.2186894
    [6] 宋安祥, 姚国文, 张高峰, 等. 低温环境下桥上CRTSⅡ型板式无砟轨道混凝土温度效应试验研究[J]. 混凝土, 2024(4): 89-93, 138.

    SONG An-xiang, YAO Guo-wen, ZHANG Gao-feng, et al. Experimental study on temperature effect of CRTSⅡ slab ballastless track concrete on bridge under low temperature environment[J]. Concrete, 2024(4): 89-93, 138.
    [7] WU W, LIU P, GONG Y F. Research on the heat-humidity coupling transfer model of the CRTS Ⅱ type track slab and its characteristics[J]. International Journal of Heat and Mass Transfer, 2024, 224: 125368. doi: 10.1016/j.ijheatmasstransfer.2024.125368
    [8] WANG D, LI S, LIN C, et al. Stiffness identification of fixing device in CRTSⅡ slab track based on long-term monitoring data[J]. Structural Health Monitoring, 2024, 23(2): 945-957. doi: 10.1177/14759217231177012
    [9] REN J, LIU W, LAI J, et al. Performance deterioration and structural state diagnosis of slab tracks for high-speed railways: a review[J]. Engineering Failure Analysis, 2024, DOI: 10.1016/j.engfailanal.2024.107955.
    [10] 金珊珊, 杨媛, 徐增淼, 等. 水泥乳化沥青砂浆微观结构演变规律研究[J]. 硅酸盐通报, 2024, 43(7): 2383-2392.

    JIN Shan-shan, YANG Yuan, XU Zeng-miao, et al. Microstructure evolution law of cement-emulsified asphalt mortar[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(7): 2383-2392.
    [11] NAJJAR S, MOGHADDAM A M, SAHAF A, et al. Predicting fracture behavior (mixed-modes Ⅰ/Ⅲ) of cement asphalt mortar under fatigue and static loading conditions using response surface method[J]. Fatigue and Fracture of Engineering Materials and Structures, 2023, 47(3): 781-817.
    [12] WANG T, WU S L, JIA H Q, et al. Influences of cement asphalt emulsified mortar construction on track slab geometry status[J]. Railway Sciences, 2023, 2(4): 447-458. doi: 10.1108/RS-10-2023-0030
    [13] MA C, WU Y, SHI J Y, et al. Preparation and characterization of a novel magnesium phosphate cement-based emulsified asphalt mortar[J]. Ceramics International, 2023, 49(13): 21422-21432. doi: 10.1016/j.ceramint.2023.03.271
    [14] LI Y, LI H, ZHOU R, et al. Mechanical performance of CRTS Ⅱ slab tracks in reinforced-unreinforced transition zone in extreme heat events[J]. Transportation Geotechnics, 2024, DOI: 10.1016/j.trgeo.2024.101201.
    [15] XIN X, ZHOU S, REN Z Y C, et al. Influence and sensitivity analysis of mortar void in CRTSⅡ ballastless slab track on the vehicle-track dynamics[J]. Journal of Mechanical Science and Technology, 2024, 38(2): 557-568. doi: 10.1007/s12206-024-0105-1
    [16] WANG D D, LI S L, LIN C, et al. Experimental study of friction performance degradation in sliding layer of CRTSⅡ slab track considering dust incursion[J]. Engineering Failure Analysis, 2024, DOI: 10.1016/j.engfailanal.2023.107850.
    [17] ZHOU R, ZHU X, REN W X, et al. Thermal evolution of CRTS Ⅱ slab track under various environmental temperatures: experimental study[J]. Construction and Building Materials, 2022, 325: 126699. doi: 10.1016/j.conbuildmat.2022.126699
    [18] 张建超, 刘世川, 田秀淑. 无砟轨道混凝土结构病害检测技术研究综述[J]. 北京交通大学学报, 2022, 46(6): 80-92.

    ZHANG Jian-chao, LIU Shi-chuan, TIAN Xiu-shu, Review on disease detection technology for ballastless track concrete structure[J]. Journal of Beijing Jiaotong University, 2022, 46(6): 80-92.
    [19] 王发洲, 刘志超, 胡曙光, 等. 掺沥青乳液水泥体系的凝结时间对CA砂浆性能的影响[J]. 建筑材料学报, 2008, 11(2): 162-166.

    WANG Fa-zhou, LIU Zhi-chao, HU Shu-guang, et al. Influence of setting process of cement system in the presence of asphalt emulsion on the properties of CA mortar[J]. Journal of Building Materials, 2008, 11(2): 162-166.
    [20] WANG Z J, SHU X, RUTHERFORD T, et al. Effects of asphalt emulsion on properties of fresh cement emulsified asphalt mortar[J]. Construction and Building Materials, 2015, 75: 25-30. doi: 10.1016/j.conbuildmat.2014.11.013
    [21] SHI J, LIU B, TAN J, et al. Experimental studies and microstructure analysis for rapid-hardening cement emulsified asphalt mortar[J]. Journal of Construction Engineering and Management, 2020, 146(12): 04020130. doi: 10.1061/(ASCE)CO.1943-7862.0001933
    [22] MA C, LIU Y T, ZHOU H J, et al. Influencing mechanism of sodium tripolyphosphate on the rheological properties of magnesium phosphate cement[J]. Powder Technology, 2021, 387: 406-414. doi: 10.1016/j.powtec.2021.04.052
    [23] WU Y C, WANG X B, LI M. Role of thixotropy in interlayer microstructure and properties of additively manufactured cementitious materials[J]. Cement and Concrete Research, 2024, 179: 107460. doi: 10.1016/j.cemconres.2024.107460
    [24] CHEN H P, LI W B, JIANG Y, et al. Fatigue life prediction for CA mortar in CRTSⅡ railway slab track subjected to combined thermal action and vehicle load by mesoscale numerical modelling[J]. Construction and Building Materials, 2024, 437: 136987. doi: 10.1016/j.conbuildmat.2024.136987
    [25] 刘晓, 赖光洪, 夏春蕾, 等. 混凝土高性能减水剂的绿色与节能制备方法研究进展[J]. 高分子材料科学与工程, 2023, 39(3): 172-180.

    LIU Xiao, LAI Guang-hong, XIA Chun-lei, et al. Progress on green and energy-saving preparation methods of concrete high performance water reducer[J]. Polymer Materials Science and Engineering, 2023, 39(3): 172-180.
    [26] ZENG X H, ZHU H S, LAN X L, et al. Study on relationships between static mechanical properties and composition of low modulus CA mortar[J]. Construction and Building Materials, 2021, 274: 121836. doi: 10.1016/j.conbuildmat.2020.121836
    [27] OUYANG J, HAN B G, CAO Y, et al. The role and interaction of superplasticizer and emulsifier in fresh cement asphalt emulsion paste through rheology study[J]. Construction and Building Materials, 2016, 125: 643-653. doi: 10.1016/j.conbuildmat.2016.08.085
    [28] PENG L, CHEN B. Study on the basic properties and mechanism of waste sludge solidified by magnesium phosphate cement containing different active magnesium oxide[J]. Construction and Building Materials, 2021, DOI: 10.1016/j.conbuildmat.2021.122609.
    [29] FAN S J, CHEN B. Experimental research of water stability of magnesium alumina phosphate cements mortar[J]. Construction and Building Materials, 2015, 94: 164-171. doi: 10.1016/j.conbuildmat.2015.06.050
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  87
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回