Equivalent AC layer thickness conversion and deflection index correction based on structural negative thixotropic effect
-
摘要: 为揭示落锤式弯沉仪(FWD)瞬时荷载作用下沥青路面结构弯沉的本质规律,以RIOHTrack足尺试验环道上具有相同路基和基层条件的5个结构为基准结构,分析FWD瞬时冲击荷载作用下沥青路面弯沉指标随厚度的变化规律;在此基础上,基于等刚度原理推导环道不同基层结构的当量沥青混凝土(AC)层厚度,从而将环道19个路面结构简化为当量AC层+路基的双层体系结构;据此提出了一个基于承载能力指标的沥青路面结构简易设计方法,并考虑土基模量和上部结构当量AC层模量,构建了理论弯沉指标的综合修正模型。研究结果表明:FWD瞬时荷载作用下沥青路面结构具有显著的负触变效应,即在相同路基及基层条件下,弯沉指标表现出随沥青层厚度增加而减小的规律,这一现象在不同荷载水平和环境条件下均得到了验证;路面结构当量AC层厚度与实测弯沉盆面积相关性在99%以上,证明提出的当量AC层厚度换算方法具有较好的可靠性;与传统的弯沉综合修正模型相比,提出的F修正模型可以同时考虑路基模量和上部结构条件,从而弥补现有弯沉修正方法不考虑路面结构型式影响的缺陷。研究成果可以为沥青路面设计提供一个简单可行的经验方法。Abstract: To reveal the essential law of asphalt pavement structure deflection under instantaneous loads of falling weight deflectometer (FWD), five structures on the RIOHTrack full-scale test track under the same subgrade and base conditions were seen as benchmark structures, and the variation law of asphalt pavement deflection index with thickness under instantaneous impact loads of FWD was analyzed. Based on the principle of equal stiffness, the equivalent asphalt concrete (AC) layer thickness for different base structures of RIOHTrack was derived, and the 19 pavement structures were simplified into a double-layer system consisting of equivalent AC layer + subgrade. A simple design method for asphalt pavement structure based on bearing capacity index was proposed, and a comprehensive correction model for theoretical deflection index was constructed by considering soil modulus and equivalent AC layer modulus of the superstructure. Research results indicate that under instantaneous loads of FWD, asphalt pavement structures have significant negative thixotropic effects. The deflection index shows a decreasing trend with the increase in asphalt layer thickness under the same subgrade and base conditions. This phenomenon has been verified under different load levels and environmental conditions. The correlation between the equivalent AC layer thickness of the pavement structure and the measured deflection basin area is over 99%, which proves that the proposed equivalent AC layer thickness conversion method has good reliability. Compared with the traditional comprehensive deflection correction models, the F correction model proposed considers both the subgrade and the superstructure modulus, thus compensating for the deficiency of existing deflection correction methods that fail to consider the impact of the pavement structure form. The research results can provide a simple and feasible method for the asphalt pavement structure design.
-
表 1 基准结构实测弯沉盆面积及AC层厚度
Table 1. Measured deflection basin areas and AC layer thickness of benchmark structures
序号 结构 平均SS/ 0.01 mm2 hAC/cm 设计 计算 差值 1 STR2 74.34 12 12.10 0.10 2 STR6 69.83 16 14.68 -1.32 3 STR7 64.00 18 19.22 1.22 4 STR13 59.09 24 24.59 0.59 5 STR11 57.29 28 27.06 -0.94 表 2 非基准结构实测弯沉盆面积及AC层厚度
Table 2. Measured deflection basin areas and AC layer thickness of non-benchmark structures
序号 结构 平均SS/ 0.01 mm2 hAC/cm 设计 计算 差值 1 STR1 61.96 12 21.24 9.24 2 STR15 62.56 36 20.61 -15.39 3 STR19 63.79 48 19.41 -28.59 4 STR14 64.11 24 19.12 -4.88 5 STR5 65.10 12 18.23 6.23 6 STR17 65.26 36 18.10 -17.90 7 STR4 67.25 12 16.50 4.50 8 STR8 68.07 18 15.89 -2.11 9 STR16 68.89 36 15.31 -20.69 10 STR9 70.20 18 14.45 -3.55 11 STR18 76.91 52 10.90 -41.10 12 STR3 92.57 12 6.15 -5.85 13 STR10 92.71 28 6.12 -21.88 14 STR12 103.00 24 4.42 -19.58 表 3 不同基层结构的当量AC层厚度
Table 3. Equivalent AC layer thickness of different base structures
基层材料及厚度 当量AC层厚度/cm 冬季 夏季 年均 20 cm CBG-A 18.02 21.38 19.29 20 cm CBG-B 16.90 19.00 17.54 24 cm刚性基层 21.46 28.83 24.66 20 cm CS 8.06 11.40 9.24 20 cm GB(底基层) 4.46 4.56 4.06 20 cm GB(联结层) 1.57 0.94 0.33 表 4 当量AC层厚度与实测弯沉盆面积关系拟合结果
Table 4. Fitting results of relationship between equivalent AC layer thickness and measured deflection basin
条件 a b c R2 均值 方差 均值 方差 均值 方差 冬季 44.81 4.856 -196.9 105.9 0.961 4 0.012 8 0.921 8 夏季 57.42 1.708 -1 601.2 1 351.8 0.933 3 0.013 0 0.902 5 年均 50.70 2.375 -439.1 287.7 0.949 7 0.011 7 0.916 4 表 5 弯沉盆面积计算值
Table 5. Calculation values of deflection basin area
HAC/cm 75 70 65 60 55 50 SS/0.01mm2 59.6 62.4 66.0 70.4 75.9 82.9 表 6 不同AC模量条件下理论弯沉盆面积的计算结果
Table 6. Calculation results of theoretical deflection basin area under different AC modulus conditions
E0/MPa HAC/cm 不同EAC(MPa)下的SL/0.01 mm2 E0/MPa HAC/cm 不同EAC(MPa)下的SL/0.01 mm2 5.0×104 3.0×104 1.5×104 1.0×104 5.0×103 5.0×104 3.0×104 1.5×104 1.0×104 5.0×103 50 75 152.6 178.4 219.5 247.0 300.7 200 75 57.9 67.1 81.4 90.8 108.7 70 162.5 189.8 232.8 261.6 317.2 70 61.4 70.9 85.7 95.3 113.3 65 173.9 202.6 247.9 278.0 335.7 65 65.3 75.2 90.5 100.3 118.4 60 186.8 217.3 265.0 296.6 356.4 60 69.7 80.1 95.8 105.7 123.9 55 201.9 234.3 284.7 317.8 379.7 55 74.8 85.7 101.8 111.8 130.0 50 219.5 254.0 307.5 342.1 406.0 50 80.7 92.0 108.5 118.6 136.6 70 75 120.9 141.0 173.0 194.3 235.6 250 75 49.4 57.1 69.2 77.0 92.0 70 128.6 149.8 183.2 205.4 248.0 70 52.3 60.4 72.7 80.7 95.7 65 137.4 159.8 194.8 217.9 261.8 65 55.6 64.0 76.6 84.7 99.8 60 147.5 171.1 207.9 231.9 277.1 60 59.3 68.0 81.0 89.1 104.2 55 159.1 184.1 222.8 247.9 294.2 55 63.6 72.6 85.8 94.0 108.9 50 172.7 199.3 240.0 266.0 313.3 50 68.4 77.7 91.2 99.4 114.2 90 75 101.5 118.2 144.6 162.2 196.1 300 75 43.4 50.1 60.5 67.3 80.3 70 107.9 125.5 153.0 171.2 206.0 70 45.9 52.9 63.5 70.4 83.4 65 115.2 133.6 162.4 181.4 217.0 65 48.7 56.0 66.8 73.8 86.7 60 123.5 142.9 173.1 192.7 229.1 60 51.9 59.4 70.5 77.5 90.3 55 133.1 153.6 185.2 205.5 242.6 55 55.6 63.3 74.5 81.5 94.3 50 144.2 166.0 199.1 220.0 257.6 50 59.7 67.7 79.1 86.0 98.6 100 75 94.3 109.7 134.1 150.3 181.5 350 75 38.9 44.8 54.0 60.0 71.5 70 100.2 116.4 141.8 158.6 190.6 70 41.1 47.2 56.6 62.7 74.2 65 106.9 124.0 150.5 167.9 200.5 65 43.6 49.9 59.5 65.6 77.0 60 114.6 132.5 160.3 178.2 211.5 60 46.4 53.0 62.7 68.7 80.1 55 123.4 142.4 171.3 189.8 223.6 55 49.6 56.3 66.1 72.2 83.4 50 133.7 153.7 184.0 203.0 237.2 50 53.2 60.1 70.0 76.0 87.0 150 75 70.9 82.3 100.2 112.0 134.6 400 75 35.3 40.7 48.9 54.3 64.8 70 75.3 87.2 105.7 117.9 140.8 70 37.3 42.8 51.3 56.7 67.0 65 80.2 92.7 111.9 124.3 147.5 65 39.5 45.2 53.8 59.2 69.5 60 85.8 98.9 118.8 131.5 154.9 60 42.0 47.9 56.5 62.0 72.1 55 92.2 105.9 126.6 139.5 163.0 55 44.9 50.9 59.6 65.0 75.0 50 99.6 114.0 135.3 148.5 172.0 50 48.1 54.2 63.0 68.3 78.1 表 7 Allometric1模型参数拟合结果
Table 7. Parameter fitting results by Allometric1 model
E0/ MPa EAC/ MPa A B R2 E0/ MPa EAC/ MPa A B R2 均值 方差 均值 方差 均值 方差 均值 方差 50 5.0×104 7 295 106.8 -0.895 3 0.003 6 0.999 9 200 5.0×104 1 980 38.2 -0.817 7 0.004 7 0.999 8 3.0×104 7 642 122.6 -0.869 8 0.003 9 0.999 9 3.0×104 1 932 46.8 -0.777 9 0.005 9 0.999 7 1.5×104 7 912 143.0 -0.829 9 0.004 4 0.999 9 1.5×104 1 727 53.9 -0.706 9 0.007 6 0.999 4 1.0×104 7 881 167.1 -0.801 5 0.005 2 0.999 8 1.0×104 1 555 51.7 -0.657 3 0.008 1 0.999 2 5.0×103 7 319 209.8 -0.738 7 0.007 0 0.999 6 5.0×103 1 241 40.3 -0.563 3 0.007 9 0.999 0 70 5.0×104 5 383 84.5 -0.878 9 0.003 8 0.999 9 250 5.0×104 1 576 33.4 -0.801 5 0.005 2 0.999 8 3.0×104 5 578 93.0 -0.851 4 0.004 1 0.999 9 3.0×104 1 506 40.3 -0.757 2 0.006 5 0.999 6 1.5×104 5 643 116.0 -0.806 7 0.005 0 0.999 8 1.5×104 1 308 42.6 -0.680 2 0.007 9 0.999 3 1.0×104 5 494 136.2 -0.773 5 0.006 1 0.999 7 1.0×104 1 163 39.0 -0.628 1 0.008 2 0.999 2 5.0×103 4 879 154.0 -0.701 2 0.007 7 0.999 4 5.0×103 914 28.6 -0.531 2 0.007 6 0.999 0 90 5.0×104 4 269 69.0 -0.865 7 0.004 0 0.999 9 300 5.0×104 1 300 30.0 -0.786 9 0.005 6 0.999 7 3.0×104 4 385 76.9 -0.836 5 0.004 3 0.999 9 3.0×104 1 220 35.0 -0.738 7 0.007 0 0.999 6 1.5×104 4 332 100.0 -0.786 9 0.005 6 0.999 7 1.5×104 1 037 34.5 -0.657 3 0.008 1 0.999 2 1.0×104 4 137 114.1 -0.749 5 0.006 7 0.999 6 1.0×104 914 30.5 -0.603 4 0.008 1 0.999 1 5.0×103 3 560 117.2 -0.670 6 0.008 0 0.999 3 5.0×103 711 21.4 -0.504 4 0.007 3 0.999 0 100 5.0×104 3 870 63.3 -0.860 0 0.004 0 0.999 9 350 5.0×104 1 099 27.2 -0.773 5 0.006 1 0.999 7 3.0×104 3 956 71.5 -0.829 9 0.004 4 0.999 9 3.0×104 1 016 30.6 -0.722 0 0.007 4 0.999 5 1.5×104 3 865 93.7 -0.777 9 0.005 9 0.999 7 1.5×104 849 28.5 -0.637 2 0.008 2 0.999 2 1.0×104 3 660 104.9 -0.738 7 0.007 0 0.999 6 1.0×104 743 24.5 -0.582 1 0.008 0 0.999 1 5.0×103 3 111 103.4 -0.657 3 0.008 1 0.999 2 5.0×103 574 16.5 -0.481 4 0.007 0 0.998 9 150 5.0×104 2 631 46.1 -0.836 5 0.004 3 0.999 9 400 5.0×104 947 24.9 -0.761 1 0.006 4 0.999 7 3.0×104 2 627 55.7 -0.801 5 0.005 2 0.999 8 3.0×104 864 27.0 -0.706 9 0.007 6 0.999 4 1.5×104 2 440 69.9 -0.738 7 0.007 0 0.999 6 1.5×104 712 23.9 -0.619 4 0.008 2 0.999 1 1.0×104 2 240 71.7 -0.693 0 0.007 8 0.999 4 1.0×104 620 20.1 -0.563 3 0.007 9 0.999 0 5.0×103 1 827 61.0 -0.603 4 0.008 1 0.999 1 5.0×103 476 13.1 -0.461 2 0.006 7 0.998 9 表 8 Allometric1模型拟合E0与A、B参数的拟合结果
Table 8. Fitting results of parameters E0, A, and B by Allometric1 model
EAC/MPa pA qA R2 pB qB R2 均值 方差 均值 方差 均值 方差 均值 方差 5.0×104 301 612 13 259 -0.949 0.010 1 0.999 3 1.221 0.019 5 -0.077 0 0.003 2 0.984 9 3.0×104 386 708 24 871 -1.000 0.014 9 0.998 7 1.296 0.031 8 -0.098 3 0.004 9 0.978 1 1.5×104 584 441 49 339 -1.096 0.019 7 0.998 2 1.462 0.049 6 -0.139 7 0.006 8 0.979 1 1.0×104 753 041 61 121 -1.162 0.019 1 0.998 6 1.582 0.057 8 -0.168 4 0.007 4 0.983 1 5.0×103 1 055 313 60 625 -1.269 0.013 6 0.999 4 1.806 0.074 2 -0.222 8 0.008 4 0.987 6 表 9 Allometric1模型拟合EAC与s、t参数的拟合结果
Table 9. Fitting results of parameters EAC, s, and t by Allometric1 model
参数 s t R2 均值 方差 均值 方差 pA 1.11×108 1.70×107 -0.545 4 0.016 8 0.996 9 -qA 3.791 0.114 9 -0.128 7 0.003 2 0.997 6 pB 8.007 0.581 3 -0.175 7 0.007 6 0.992 6 -qB 10.606 1.439 7 -0.452 2 0.014 8 0.996 4 -
[1] 王旭东, 肖倩. 长寿命路面技术发展与实践[J]. 科学通报, 2020, 65(30): 3217-3218.WANG Xu-dong, XIAO Qian. Development and practice of long-life pavement technology[J]. Chinese Science Bulletin, 2020, 65(30): 3217-3218. [2] 吕松涛, 赵霈, 鲁巍巍, 等. 面向长寿命的既有高速公路沥青路面延寿设计综述[J]. 交通运输工程学报, 2024, 24(2): 20-49. doi: 10.19818/j.cnki.1671-1637.2024.02.00LYU Song-tao, ZHAO Pei, LU Wei-wei, et al. Review on long-life-oriented life extension design of existing expressway asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 20-49. doi: 10.19818/j.cnki.1671-1637.2024.02.00 [3] 查旭东. 路面结构层模量反算方法综述[J]. 交通运输工程学报, 2002, 2(4): 1-6. https://transport.chd.edu.cn/article/id/200204001ZHA Xu-dong. Summary of backcalculation methods of pavement layer moduli[J]. Journal of Traffic and Transportation Engineering, 2002, 2(4): 1-6. https://transport.chd.edu.cn/article/id/200204001 [4] FU G Z, XUE C, ZHAO Y Q, et al. Accuracy evaluation of statically backcalculated layer properties of asphalt pavements from falling weight deflectometer data[J]. Canadian Journal of Civil Engineering, 2020, 47(3): 317-325. [5] NEGA A, NIKRAZ H, AL-QADI I L. Dynamic analysis of falling weight deflectometer[J]. Journal of Traffic and Transportation Engineering (English Edition), 2016, 3(5) : 427-437. [6] 赵延庆, 薛成, 黄荣华. 沥青混合料抗压回弹模量与动态模量比较分析[J]. 武汉理工大学学报, 2007, 29(12): 105-107, 111.ZHAO Yan-qing, XUE Cheng, HUANG Rong-hua. Comparison of compressive resilient modulus and dynamic modulus of asphalt mixtures[J]. Journal of Wuhan University of Technology, 2007, 29(12): 105-107, 111. [7] 刘志杨, 董泽蛟, 周涛, 等. 基于材料信息学的沥青混合料性能提升综述及展望[J]. 中国公路学报, 2024, 37(4): 98-120.LIU Zhi-yang, DONG Ze-jiao, ZHOU Tao, et al. Review and prospects of performance enhancement of asphalt mixtures based on material informatics[J]. China Journal of Highway and Transport, 2024, 37(4): 98-120. [8] LI Q, WANG X D, LIU X, et al. Review on constitutive models of road materials[J]. Journal of Road Engineering, 2022, 2(1): 70-83. [9] SOLATIFAR N, KAVUSSI A, ABBASGHORBANI M, et al. Application of FWD data in developing dynamic modulus master curves of in-service asphalt layers[J]. Journal of Civil Engineering and Management, 2017, 23(5): 661-671. [10] 曾杰, 肖川, 李保险, 等. FWD荷载下沥青路面动力响应的温度影响作用研究[J]. 公路工程, 2015, 40(1): 107-111, 161.ZENG Jie, XIAO Chuan, LI Bao-xian, et al. Study on dynamic response of asphalt pavement under FWD load base on different temperature conditions[J]. Highway Engineering, 2015, 40(1): 107-111, 161. [11] 肖川, 邱延峻, 曾杰, 等. FWD荷载作用下的沥青路面实测动力响应研究[J]. 公路交通科技, 2014, 31(2): 1-8.XIAO Chuan, QIU Yan-jun, ZENG Jie, et al. Study on measured dynamic response of asphalt pavement under FWD load[J]. Journal of Highway and Transportation Research and Development, 2014, 31(2): 1-8. [12] 付国志. 沥青路面弯沉分析方法评价及开裂沥青路面弯沉分析[D]. 大连: 大连理工大学, 2022.FU Guo-zhi. Evaluation of deflection analysis methods for asphalt pavements and deflection analysis of cracked asphalt pavements[D]. Dalian: Dalian University of Technology, 2022. [13] 王旭东. 足尺路面试验环道路面结构与材料设计[J]. 公路交通科技, 2017, 34(6): 30-37.WANG Xu-dong. Design of pavement structure and material for full-scale test track[J]. Journal of Highway and Transportation Research and Development, 2017, 34(6): 30-37. [14] HOFFMAN R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. Ⅱ. Theory and experimental tests[J]. Journal of Colloid and Interface Science, 1974, 46(3): 491-506. https://www.sciencedirect.com/science/article/pii/0021979774900599 [15] BRADY J F, BOSSIS G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation[J]. Journal of Fluid Mechanics, 1985, 155: 105-129. [16] 赵明媚, 张进秋, 彭志召, 等. 纳米SiO2/聚乙二醇复合体系剪切增稠特性与机制[J]. 复合材料学报, 2022, 39(4): 1725-1738.ZHAO Ming-mei, ZHANG Jin-qiu, PENG Zhi-zhao, et al. Shear thickening characteristics and mechanism of nano-SiO2/polyethylene glycol composite system[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1725-1738. [17] 单丽岩, 谭忆秋. 虑触变性的沥青疲劳过程分析[J]. 中国公路学报, 2012, 25(4): 10-15.SHAN Li-yan, TAN Yi-qiu. Analysis of fatigue process of asphalt considering thixotropy[J]. China Journal of Highway and Transport, 2012, 25(4): 10-15. [18] 梁波, 廖威, 郑健龙. 改性剂与沥青相容性作用中分子动力学模拟综述[J]. 交通运输工程学报, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005LIANG Bo, LIAO Wei, ZHENG Jian-long. Review on molecular dynamics simulation for compatibilities of modifiers with asphalt[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005 [19] 王黎明, 宋子坤, 周辉, 等. 超声处置石油沥青的流变学响应及响应机理[J]. 吉林大学学报(工学版), 2025, 55(4): 1346-1355.WANG Li-ming, SONG Zi-kun, ZHOU Hui, et al. Rheological response and response mechanism of petroleum asphalt treated with ultrasound[J]. Journal of Jilin University (Engineering and Technology Edition), 2025, 55(4): 1346-1355. [20] 王涛, 贾恒琼, 李洪刚. CRTS Ⅰ型水泥乳化沥青砂浆流变性能[J]. 土木工程与管理学报, 2018, 35(1): 48-53.WANG Tao, JIA Heng-qiong, LI Hong-gang. Rheological properties of CRTSⅠcement asphalt emulsified mortar[J]. Journal of Civil Engineering and Management, 2018, 35(1): 48-53. [21] 吕松涛, 赵霈, 鲁巍巍, 等. 面向长寿命的既有高速公路沥青路面延寿设计综述[J]. 交通运输工程学报, 2024, 24(2): 20-49. doi: 10.19818/j.cnki.1671-1637.2024.02.002LYU Song-tao, ZHAO Pei, LU Wei-wei, et al. Review on long-life-oriented life extension design of existing expressway asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 20-49. doi: 10.19818/j.cnki.1671-1637.2024.02.002 [22] 董元帅, 唐伯明, 刘清泉, 等. 基于弯沉盆参数的沥青路面动态弯沉综合修正系数[J]. 东南大学学报(自然科学版), 2011, 41(5): 1081-1085.DONG Yuan-shuai, TANG Bo-ming, LIU Qing-quan, et al. Dynamic synthetic deflection correction factor of asphalt pavement based on deflection basin parameters[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(5): 1081-1085. -
下载: