留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构负触变效应下当量沥青混凝土层厚度换算与弯沉指标修正

王旭东 李倩 刘旭 蔡秋香

王旭东, 李倩, 刘旭, 蔡秋香. 结构负触变效应下当量沥青混凝土层厚度换算与弯沉指标修正[J]. 交通运输工程学报, 2025, 25(3): 192-204. doi: 10.19818/j.cnki.1671-1637.2025.03.012
引用本文: 王旭东, 李倩, 刘旭, 蔡秋香. 结构负触变效应下当量沥青混凝土层厚度换算与弯沉指标修正[J]. 交通运输工程学报, 2025, 25(3): 192-204. doi: 10.19818/j.cnki.1671-1637.2025.03.012
WANG Xu-dong, LI Qian, LIU Xu, CAI Qiu-xiang. Equivalent AC layer thickness conversion and deflection index correction based on structural negative thixotropic effect[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 192-204. doi: 10.19818/j.cnki.1671-1637.2025.03.012
Citation: WANG Xu-dong, LI Qian, LIU Xu, CAI Qiu-xiang. Equivalent AC layer thickness conversion and deflection index correction based on structural negative thixotropic effect[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 192-204. doi: 10.19818/j.cnki.1671-1637.2025.03.012

结构负触变效应下当量沥青混凝土层厚度换算与弯沉指标修正

doi: 10.19818/j.cnki.1671-1637.2025.03.012
基金项目: 

科技基础资源调查专项项目 2022FY101400

交通运输部公路科学研究所(院)交通强国试点项目 QG2021-1-1-1

中央级公益性科研院所基本科研业务费专项项目 2023-9024

中央级公益性科研院所基本科研业务费专项项目 2024-9004

详细信息
    作者简介:

    王旭东(1968-),男,江苏苏州人,交通运输部公路科学研究院研究员,工学博士,从事沥青路面长期性能研究

    通讯作者:

    李倩(1988-),女,陕西扶风人,河北大学讲师,工学博士

  • 中图分类号: U416.27

Equivalent AC layer thickness conversion and deflection index correction based on structural negative thixotropic effect

Funds: 

Science & Technology Fundamental Resources Investigation Program 2022FY101400

Research Institute of Highway Ministry of Transport Transportation Power Pilot Project QG2021-1-1-1

Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes 2023-9024

Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes 2024-9004

More Information
Article Text (Baidu Translation)
  • 摘要: 为揭示落锤式弯沉仪(FWD)瞬时荷载作用下沥青路面结构弯沉的本质规律,以RIOHTrack足尺试验环道上具有相同路基和基层条件的5个结构为基准结构,分析FWD瞬时冲击荷载作用下沥青路面弯沉指标随厚度的变化规律;在此基础上,基于等刚度原理推导环道不同基层结构的当量沥青混凝土(AC)层厚度,从而将环道19个路面结构简化为当量AC层+路基的双层体系结构;据此提出了一个基于承载能力指标的沥青路面结构简易设计方法,并考虑土基模量和上部结构当量AC层模量,构建了理论弯沉指标的综合修正模型。研究结果表明:FWD瞬时荷载作用下沥青路面结构具有显著的负触变效应,即在相同路基及基层条件下,弯沉指标表现出随沥青层厚度增加而减小的规律,这一现象在不同荷载水平和环境条件下均得到了验证;路面结构当量AC层厚度与实测弯沉盆面积相关性在99%以上,证明提出的当量AC层厚度换算方法具有较好的可靠性;与传统的弯沉综合修正模型相比,提出的F修正模型可以同时考虑路基模量和上部结构条件,从而弥补现有弯沉修正方法不考虑路面结构型式影响的缺陷。研究成果可以为沥青路面设计提供一个简单可行的经验方法。

     

  • 图  1  RIOHTrack足尺环道结构形式及材料组成

    Figure  1.  Structure forms and material compositions of RIOHTrack full-scale test track

    图  2  FWD传感器及其位置

    Figure  2.  FWD sensors and their locations

    图  3  不同检测周期基准结构的弯沉盆面积对比

    Figure  3.  Comparison of deflection basin areas of benchmark structures in different detection cycles

    图  4  不同季节基准结构的弯沉盆面积对比

    Figure  4.  Comparison of deflection basin areas of benchmark structures in different seasons

    图  5  不同荷载水平下弯沉指标随AC层厚度的变化

    Figure  5.  Variation of deflection index with AC layer thickness under different load levels

    图  6  不同季节条件下弯沉指标随AC层厚度的变化

    Figure  6.  Variation of deflection indexes with AC layer thickness in different seasons

    图  7  当量AC层厚度与弯沉盆面积的散点图

    Figure  7.  Scatter diagram of equivalent AC layer thickness and deflection basin area

    表  1  基准结构实测弯沉盆面积及AC层厚度

    Table  1.   Measured deflection basin areas and AC layer thickness of benchmark structures

    序号 结构 平均SS/ 0.01 mm2 hAC/cm
    设计 计算 差值
    1 STR2 74.34 12 12.10 0.10
    2 STR6 69.83 16 14.68 -1.32
    3 STR7 64.00 18 19.22 1.22
    4 STR13 59.09 24 24.59 0.59
    5 STR11 57.29 28 27.06 -0.94
    下载: 导出CSV

    表  2  非基准结构实测弯沉盆面积及AC层厚度

    Table  2.   Measured deflection basin areas and AC layer thickness of non-benchmark structures

    序号 结构 平均SS/ 0.01 mm2 hAC/cm
    设计 计算 差值
    1 STR1 61.96 12 21.24 9.24
    2 STR15 62.56 36 20.61 -15.39
    3 STR19 63.79 48 19.41 -28.59
    4 STR14 64.11 24 19.12 -4.88
    5 STR5 65.10 12 18.23 6.23
    6 STR17 65.26 36 18.10 -17.90
    7 STR4 67.25 12 16.50 4.50
    8 STR8 68.07 18 15.89 -2.11
    9 STR16 68.89 36 15.31 -20.69
    10 STR9 70.20 18 14.45 -3.55
    11 STR18 76.91 52 10.90 -41.10
    12 STR3 92.57 12 6.15 -5.85
    13 STR10 92.71 28 6.12 -21.88
    14 STR12 103.00 24 4.42 -19.58
    下载: 导出CSV

    表  3  不同基层结构的当量AC层厚度

    Table  3.   Equivalent AC layer thickness of different base structures

    基层材料及厚度 当量AC层厚度/cm
    冬季 夏季 年均
    20 cm CBG-A 18.02 21.38 19.29
    20 cm CBG-B 16.90 19.00 17.54
    24 cm刚性基层 21.46 28.83 24.66
    20 cm CS 8.06 11.40 9.24
    20 cm GB(底基层) 4.46 4.56 4.06
    20 cm GB(联结层) 1.57 0.94 0.33
    下载: 导出CSV

    表  4  当量AC层厚度与实测弯沉盆面积关系拟合结果

    Table  4.   Fitting results of relationship between equivalent AC layer thickness and measured deflection basin

    条件 a b c R2
    均值 方差 均值 方差 均值 方差
    冬季 44.81 4.856 -196.9 105.9 0.961 4 0.012 8 0.921 8
    夏季 57.42 1.708 -1 601.2 1 351.8 0.933 3 0.013 0 0.902 5
    年均 50.70 2.375 -439.1 287.7 0.949 7 0.011 7 0.916 4
    下载: 导出CSV

    表  5  弯沉盆面积计算值

    Table  5.   Calculation values of deflection basin area

    HAC/cm 75 70 65 60 55 50
    SS/0.01mm2 59.6 62.4 66.0 70.4 75.9 82.9
    下载: 导出CSV

    表  6  不同AC模量条件下理论弯沉盆面积的计算结果

    Table  6.   Calculation results of theoretical deflection basin area under different AC modulus conditions

    E0/MPa HAC/cm 不同EAC(MPa)下的SL/0.01 mm2 E0/MPa HAC/cm 不同EAC(MPa)下的SL/0.01 mm2
    5.0×104 3.0×104 1.5×104 1.0×104 5.0×103 5.0×104 3.0×104 1.5×104 1.0×104 5.0×103
    50 75 152.6 178.4 219.5 247.0 300.7 200 75 57.9 67.1 81.4 90.8 108.7
    70 162.5 189.8 232.8 261.6 317.2 70 61.4 70.9 85.7 95.3 113.3
    65 173.9 202.6 247.9 278.0 335.7 65 65.3 75.2 90.5 100.3 118.4
    60 186.8 217.3 265.0 296.6 356.4 60 69.7 80.1 95.8 105.7 123.9
    55 201.9 234.3 284.7 317.8 379.7 55 74.8 85.7 101.8 111.8 130.0
    50 219.5 254.0 307.5 342.1 406.0 50 80.7 92.0 108.5 118.6 136.6
    70 75 120.9 141.0 173.0 194.3 235.6 250 75 49.4 57.1 69.2 77.0 92.0
    70 128.6 149.8 183.2 205.4 248.0 70 52.3 60.4 72.7 80.7 95.7
    65 137.4 159.8 194.8 217.9 261.8 65 55.6 64.0 76.6 84.7 99.8
    60 147.5 171.1 207.9 231.9 277.1 60 59.3 68.0 81.0 89.1 104.2
    55 159.1 184.1 222.8 247.9 294.2 55 63.6 72.6 85.8 94.0 108.9
    50 172.7 199.3 240.0 266.0 313.3 50 68.4 77.7 91.2 99.4 114.2
    90 75 101.5 118.2 144.6 162.2 196.1 300 75 43.4 50.1 60.5 67.3 80.3
    70 107.9 125.5 153.0 171.2 206.0 70 45.9 52.9 63.5 70.4 83.4
    65 115.2 133.6 162.4 181.4 217.0 65 48.7 56.0 66.8 73.8 86.7
    60 123.5 142.9 173.1 192.7 229.1 60 51.9 59.4 70.5 77.5 90.3
    55 133.1 153.6 185.2 205.5 242.6 55 55.6 63.3 74.5 81.5 94.3
    50 144.2 166.0 199.1 220.0 257.6 50 59.7 67.7 79.1 86.0 98.6
    100 75 94.3 109.7 134.1 150.3 181.5 350 75 38.9 44.8 54.0 60.0 71.5
    70 100.2 116.4 141.8 158.6 190.6 70 41.1 47.2 56.6 62.7 74.2
    65 106.9 124.0 150.5 167.9 200.5 65 43.6 49.9 59.5 65.6 77.0
    60 114.6 132.5 160.3 178.2 211.5 60 46.4 53.0 62.7 68.7 80.1
    55 123.4 142.4 171.3 189.8 223.6 55 49.6 56.3 66.1 72.2 83.4
    50 133.7 153.7 184.0 203.0 237.2 50 53.2 60.1 70.0 76.0 87.0
    150 75 70.9 82.3 100.2 112.0 134.6 400 75 35.3 40.7 48.9 54.3 64.8
    70 75.3 87.2 105.7 117.9 140.8 70 37.3 42.8 51.3 56.7 67.0
    65 80.2 92.7 111.9 124.3 147.5 65 39.5 45.2 53.8 59.2 69.5
    60 85.8 98.9 118.8 131.5 154.9 60 42.0 47.9 56.5 62.0 72.1
    55 92.2 105.9 126.6 139.5 163.0 55 44.9 50.9 59.6 65.0 75.0
    50 99.6 114.0 135.3 148.5 172.0 50 48.1 54.2 63.0 68.3 78.1
    下载: 导出CSV

    表  7  Allometric1模型参数拟合结果

    Table  7.   Parameter fitting results by Allometric1 model

    E0/ MPa EAC/ MPa A B R2 E0/ MPa EAC/ MPa A B R2
    均值 方差 均值 方差 均值 方差 均值 方差
    50 5.0×104 7 295 106.8 -0.895 3 0.003 6 0.999 9 200 5.0×104 1 980 38.2 -0.817 7 0.004 7 0.999 8
    3.0×104 7 642 122.6 -0.869 8 0.003 9 0.999 9 3.0×104 1 932 46.8 -0.777 9 0.005 9 0.999 7
    1.5×104 7 912 143.0 -0.829 9 0.004 4 0.999 9 1.5×104 1 727 53.9 -0.706 9 0.007 6 0.999 4
    1.0×104 7 881 167.1 -0.801 5 0.005 2 0.999 8 1.0×104 1 555 51.7 -0.657 3 0.008 1 0.999 2
    5.0×103 7 319 209.8 -0.738 7 0.007 0 0.999 6 5.0×103 1 241 40.3 -0.563 3 0.007 9 0.999 0
    70 5.0×104 5 383 84.5 -0.878 9 0.003 8 0.999 9 250 5.0×104 1 576 33.4 -0.801 5 0.005 2 0.999 8
    3.0×104 5 578 93.0 -0.851 4 0.004 1 0.999 9 3.0×104 1 506 40.3 -0.757 2 0.006 5 0.999 6
    1.5×104 5 643 116.0 -0.806 7 0.005 0 0.999 8 1.5×104 1 308 42.6 -0.680 2 0.007 9 0.999 3
    1.0×104 5 494 136.2 -0.773 5 0.006 1 0.999 7 1.0×104 1 163 39.0 -0.628 1 0.008 2 0.999 2
    5.0×103 4 879 154.0 -0.701 2 0.007 7 0.999 4 5.0×103 914 28.6 -0.531 2 0.007 6 0.999 0
    90 5.0×104 4 269 69.0 -0.865 7 0.004 0 0.999 9 300 5.0×104 1 300 30.0 -0.786 9 0.005 6 0.999 7
    3.0×104 4 385 76.9 -0.836 5 0.004 3 0.999 9 3.0×104 1 220 35.0 -0.738 7 0.007 0 0.999 6
    1.5×104 4 332 100.0 -0.786 9 0.005 6 0.999 7 1.5×104 1 037 34.5 -0.657 3 0.008 1 0.999 2
    1.0×104 4 137 114.1 -0.749 5 0.006 7 0.999 6 1.0×104 914 30.5 -0.603 4 0.008 1 0.999 1
    5.0×103 3 560 117.2 -0.670 6 0.008 0 0.999 3 5.0×103 711 21.4 -0.504 4 0.007 3 0.999 0
    100 5.0×104 3 870 63.3 -0.860 0 0.004 0 0.999 9 350 5.0×104 1 099 27.2 -0.773 5 0.006 1 0.999 7
    3.0×104 3 956 71.5 -0.829 9 0.004 4 0.999 9 3.0×104 1 016 30.6 -0.722 0 0.007 4 0.999 5
    1.5×104 3 865 93.7 -0.777 9 0.005 9 0.999 7 1.5×104 849 28.5 -0.637 2 0.008 2 0.999 2
    1.0×104 3 660 104.9 -0.738 7 0.007 0 0.999 6 1.0×104 743 24.5 -0.582 1 0.008 0 0.999 1
    5.0×103 3 111 103.4 -0.657 3 0.008 1 0.999 2 5.0×103 574 16.5 -0.481 4 0.007 0 0.998 9
    150 5.0×104 2 631 46.1 -0.836 5 0.004 3 0.999 9 400 5.0×104 947 24.9 -0.761 1 0.006 4 0.999 7
    3.0×104 2 627 55.7 -0.801 5 0.005 2 0.999 8 3.0×104 864 27.0 -0.706 9 0.007 6 0.999 4
    1.5×104 2 440 69.9 -0.738 7 0.007 0 0.999 6 1.5×104 712 23.9 -0.619 4 0.008 2 0.999 1
    1.0×104 2 240 71.7 -0.693 0 0.007 8 0.999 4 1.0×104 620 20.1 -0.563 3 0.007 9 0.999 0
    5.0×103 1 827 61.0 -0.603 4 0.008 1 0.999 1 5.0×103 476 13.1 -0.461 2 0.006 7 0.998 9
    下载: 导出CSV

    表  8  Allometric1模型拟合E0AB参数的拟合结果

    Table  8.   Fitting results of parameters E0, A, and B by Allometric1 model

    EAC/MPa pA qA R2 pB qB R2
    均值 方差 均值 方差 均值 方差 均值 方差
    5.0×104 301 612 13 259 -0.949 0.010 1 0.999 3 1.221 0.019 5 -0.077 0 0.003 2 0.984 9
    3.0×104 386 708 24 871 -1.000 0.014 9 0.998 7 1.296 0.031 8 -0.098 3 0.004 9 0.978 1
    1.5×104 584 441 49 339 -1.096 0.019 7 0.998 2 1.462 0.049 6 -0.139 7 0.006 8 0.979 1
    1.0×104 753 041 61 121 -1.162 0.019 1 0.998 6 1.582 0.057 8 -0.168 4 0.007 4 0.983 1
    5.0×103 1 055 313 60 625 -1.269 0.013 6 0.999 4 1.806 0.074 2 -0.222 8 0.008 4 0.987 6
    下载: 导出CSV

    表  9  Allometric1模型拟合EACst参数的拟合结果

    Table  9.   Fitting results of parameters EAC, s, and t by Allometric1 model

    参数 s t R2
    均值 方差 均值 方差
    pA 1.11×108 1.70×107 -0.545 4 0.016 8 0.996 9
    -qA 3.791 0.114 9 -0.128 7 0.003 2 0.997 6
    pB 8.007 0.581 3 -0.175 7 0.007 6 0.992 6
    -qB 10.606 1.439 7 -0.452 2 0.014 8 0.996 4
    下载: 导出CSV
  • [1] 王旭东, 肖倩. 长寿命路面技术发展与实践[J]. 科学通报, 2020, 65(30): 3217-3218.

    WANG Xu-dong, XIAO Qian. Development and practice of long-life pavement technology[J]. Chinese Science Bulletin, 2020, 65(30): 3217-3218.
    [2] 吕松涛, 赵霈, 鲁巍巍, 等. 面向长寿命的既有高速公路沥青路面延寿设计综述[J]. 交通运输工程学报, 2024, 24(2): 20-49. doi: 10.19818/j.cnki.1671-1637.2024.02.00

    LYU Song-tao, ZHAO Pei, LU Wei-wei, et al. Review on long-life-oriented life extension design of existing expressway asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 20-49. doi: 10.19818/j.cnki.1671-1637.2024.02.00
    [3] 查旭东. 路面结构层模量反算方法综述[J]. 交通运输工程学报, 2002, 2(4): 1-6. https://transport.chd.edu.cn/article/id/200204001

    ZHA Xu-dong. Summary of backcalculation methods of pavement layer moduli[J]. Journal of Traffic and Transportation Engineering, 2002, 2(4): 1-6. https://transport.chd.edu.cn/article/id/200204001
    [4] FU G Z, XUE C, ZHAO Y Q, et al. Accuracy evaluation of statically backcalculated layer properties of asphalt pavements from falling weight deflectometer data[J]. Canadian Journal of Civil Engineering, 2020, 47(3): 317-325.
    [5] NEGA A, NIKRAZ H, AL-QADI I L. Dynamic analysis of falling weight deflectometer[J]. Journal of Traffic and Transportation Engineering (English Edition), 2016, 3(5) : 427-437.
    [6] 赵延庆, 薛成, 黄荣华. 沥青混合料抗压回弹模量与动态模量比较分析[J]. 武汉理工大学学报, 2007, 29(12): 105-107, 111.

    ZHAO Yan-qing, XUE Cheng, HUANG Rong-hua. Comparison of compressive resilient modulus and dynamic modulus of asphalt mixtures[J]. Journal of Wuhan University of Technology, 2007, 29(12): 105-107, 111.
    [7] 刘志杨, 董泽蛟, 周涛, 等. 基于材料信息学的沥青混合料性能提升综述及展望[J]. 中国公路学报, 2024, 37(4): 98-120.

    LIU Zhi-yang, DONG Ze-jiao, ZHOU Tao, et al. Review and prospects of performance enhancement of asphalt mixtures based on material informatics[J]. China Journal of Highway and Transport, 2024, 37(4): 98-120.
    [8] LI Q, WANG X D, LIU X, et al. Review on constitutive models of road materials[J]. Journal of Road Engineering, 2022, 2(1): 70-83.
    [9] SOLATIFAR N, KAVUSSI A, ABBASGHORBANI M, et al. Application of FWD data in developing dynamic modulus master curves of in-service asphalt layers[J]. Journal of Civil Engineering and Management, 2017, 23(5): 661-671.
    [10] 曾杰, 肖川, 李保险, 等. FWD荷载下沥青路面动力响应的温度影响作用研究[J]. 公路工程, 2015, 40(1): 107-111, 161.

    ZENG Jie, XIAO Chuan, LI Bao-xian, et al. Study on dynamic response of asphalt pavement under FWD load base on different temperature conditions[J]. Highway Engineering, 2015, 40(1): 107-111, 161.
    [11] 肖川, 邱延峻, 曾杰, 等. FWD荷载作用下的沥青路面实测动力响应研究[J]. 公路交通科技, 2014, 31(2): 1-8.

    XIAO Chuan, QIU Yan-jun, ZENG Jie, et al. Study on measured dynamic response of asphalt pavement under FWD load[J]. Journal of Highway and Transportation Research and Development, 2014, 31(2): 1-8.
    [12] 付国志. 沥青路面弯沉分析方法评价及开裂沥青路面弯沉分析[D]. 大连: 大连理工大学, 2022.

    FU Guo-zhi. Evaluation of deflection analysis methods for asphalt pavements and deflection analysis of cracked asphalt pavements[D]. Dalian: Dalian University of Technology, 2022.
    [13] 王旭东. 足尺路面试验环道路面结构与材料设计[J]. 公路交通科技, 2017, 34(6): 30-37.

    WANG Xu-dong. Design of pavement structure and material for full-scale test track[J]. Journal of Highway and Transportation Research and Development, 2017, 34(6): 30-37.
    [14] HOFFMAN R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. Ⅱ. Theory and experimental tests[J]. Journal of Colloid and Interface Science, 1974, 46(3): 491-506. https://www.sciencedirect.com/science/article/pii/0021979774900599
    [15] BRADY J F, BOSSIS G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation[J]. Journal of Fluid Mechanics, 1985, 155: 105-129.
    [16] 赵明媚, 张进秋, 彭志召, 等. 纳米SiO2/聚乙二醇复合体系剪切增稠特性与机制[J]. 复合材料学报, 2022, 39(4): 1725-1738.

    ZHAO Ming-mei, ZHANG Jin-qiu, PENG Zhi-zhao, et al. Shear thickening characteristics and mechanism of nano-SiO2/polyethylene glycol composite system[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1725-1738.
    [17] 单丽岩, 谭忆秋. 虑触变性的沥青疲劳过程分析[J]. 中国公路学报, 2012, 25(4): 10-15.

    SHAN Li-yan, TAN Yi-qiu. Analysis of fatigue process of asphalt considering thixotropy[J]. China Journal of Highway and Transport, 2012, 25(4): 10-15.
    [18] 梁波, 廖威, 郑健龙. 改性剂与沥青相容性作用中分子动力学模拟综述[J]. 交通运输工程学报, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005

    LIANG Bo, LIAO Wei, ZHENG Jian-long. Review on molecular dynamics simulation for compatibilities of modifiers with asphalt[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005
    [19] 王黎明, 宋子坤, 周辉, 等. 超声处置石油沥青的流变学响应及响应机理[J]. 吉林大学学报(工学版), 2025, 55(4): 1346-1355.

    WANG Li-ming, SONG Zi-kun, ZHOU Hui, et al. Rheological response and response mechanism of petroleum asphalt treated with ultrasound[J]. Journal of Jilin University (Engineering and Technology Edition), 2025, 55(4): 1346-1355.
    [20] 王涛, 贾恒琼, 李洪刚. CRTS Ⅰ型水泥乳化沥青砂浆流变性能[J]. 土木工程与管理学报, 2018, 35(1): 48-53.

    WANG Tao, JIA Heng-qiong, LI Hong-gang. Rheological properties of CRTSⅠcement asphalt emulsified mortar[J]. Journal of Civil Engineering and Management, 2018, 35(1): 48-53.
    [21] 吕松涛, 赵霈, 鲁巍巍, 等. 面向长寿命的既有高速公路沥青路面延寿设计综述[J]. 交通运输工程学报, 2024, 24(2): 20-49. doi: 10.19818/j.cnki.1671-1637.2024.02.002

    LYU Song-tao, ZHAO Pei, LU Wei-wei, et al. Review on long-life-oriented life extension design of existing expressway asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 20-49. doi: 10.19818/j.cnki.1671-1637.2024.02.002
    [22] 董元帅, 唐伯明, 刘清泉, 等. 基于弯沉盆参数的沥青路面动态弯沉综合修正系数[J]. 东南大学学报(自然科学版), 2011, 41(5): 1081-1085.

    DONG Yuan-shuai, TANG Bo-ming, LIU Qing-quan, et al. Dynamic synthetic deflection correction factor of asphalt pavement based on deflection basin parameters[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(5): 1081-1085.
  • 加载中
图(7) / 表(9)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  49
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-26
  • 录用日期:  2025-03-10
  • 修回日期:  2025-01-07
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回