Theoretical analysis of screw pile under individual thread shear failure pattern
Article Text (Baidu Translation)
-
摘要: 为解决高铁路基工程中螺纹桩临界螺距及单螺牙式剪切破坏形态下螺牙所提供极限承载力如何计算的问题,以螺纹桩展开后的局部区域作为研究对象,对极限荷载作用下单螺牙式剪切破坏形态展开研究;根据螺牙结构受力特点建立了一种理论破坏模型,将螺牙周围土体划分为弹性压密区、被动破坏区及过渡区,通过分析不同区域的应力和变形的协调关系,推导螺牙提供的极限承载力;根据螺牙理论破坏模型提出对应临界螺距和极限承载力计算方法,通过与既有破坏模型对比分析,并结合大直剪试验结果验证了理论破坏模型的有效性及准确性。研究结果表明:提出的单螺牙式剪切破坏形态比Meyerhof破坏形态更契合螺牙实际破坏模式;螺纹桩临界螺距主要由螺牙高度及土体内摩擦角决定,其数值随螺牙高度近似线性变化,随摩擦角近似成指数性增加;单螺牙式剪切破坏形态下螺牙提供的承载力优于圆柱式剪切破坏形态,而承载力提高程度主要由土体破坏面形状及土体抗剪强度决定;螺纹桩设计阶段,在保证螺牙自身结构安全的前提下宜适当增加螺牙高度及螺牙间距,使桩周土体恰处于单螺牙式剪切破坏形态,该状态下螺纹桩极限承载力将达到峰值。研究结果可为粉土、黏土地质条件下高铁路基工程螺纹桩极限承载力的优化设计提供理论参考。Abstract: To address the problems of calculating the critical pitch of screw piles and the ultimate bearing capacity provided by threads under an individual thread shear failure pattern in high-speed railway subgrade engineering, the locally unfolded region of screw piles was taken as the research object. Research on the individual thread shear failure pattern under ultimate load was carried out. Based on the structural stress characteristics of the thread, a theoretical failure model was established by dividing the surrounding soil into an elastic compaction zone, a passive failure zone, and a transition zone. Through analysis of stress-deformation compatibility relationships in different regions, the ultimate bearing capacity provided by the thread was derived. Corresponding calculation methods for critical pitch and ultimate bearing capacity were developed according to the proposed theoretical failure model of the thread. The validity and accuracy of the model were verified through comparative analysis with existing failure models and large straight shear experiments. Research results show that the individual thread shear failure pattern proposed by the research demonstrates better agreement with the actual failure mode of the thread compared to the Meyerhof failure pattern. The critical pitch of the screw pile is primarily determined by the height of the thread and the internal friction angle of the soil, exhibiting nearly linear variation with the height of the thread and approximately exponential growth with the friction angle. The bearing capacity provided by the thread under the individual thread shear failure pattern surpasses that of the cylindrical shear failure pattern, with the improvement magnitude mainly governed by soil failure surface geometry and shear strength. During screw pile design, appropriately increasing the height of the thread and pitch while ensuring the structural safety of the thread can optimize the surrounding soil to achieve the individual thread shear failure pattern, thereby maximizing the ultimate bearing capacity of the screw pile. The research results provide a theoretical reference for the ultimate bearing capacity optimization design of screw piles in high-speed railway subgrade engineering under silt and clay geological conditions.
-
[1] 关伟, 吴红刚, 余仕江, 等. 列车荷载下螺杆桩复合地基动力特性及承载性状试验研究[J]. 岩石力学与工程学报, 2023, 42(2): 508-520.GUAN Wei, WU Hong-gang, YU Shi-jiang, et al. Experimental study on dynamic and bearing characteristics of part-screw pile composite foundations under train loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 508-520. [2] 蔡鹏. 南沿江城际高速铁路挤密螺纹桩复合地基承载特性研究[D]. 南京: 南京林业大学, 2022.CAI Peng. Study on bearing characteristics of compacted screw pile composite foundation based on Nanyanjiang intercity high-speed railway[D]. Nanjing: Nanjing Forestry University, 2022. [3] WANG B Y, HU Z P, YIN K, et al. Analysis of vertical vibration response of cushion cap-screw pile-soil system[J]. Journal of Building Engineering, 2025, 107: 112755. [4] 杨烨. 螺纹桩在宣绩高速铁路路基工程中的应用[J]. 铁道建筑, 2023, 63(7): 134-137.YANG Ye. Research on application of screw pile in subgrade engineering of Xuancheng-Jixi high speed railway[J]. Railway Engineering, 2023, 63(7): 134-137. [5] 郝杰. 毛乌素沙漠高铁螺杆桩复合地基沉降特性研究[D]. 兰州: 兰州交通大学, 2022.HAO Jie. Study on the settlement characteristics of high-speed rail screw pile composite foundation in Maowusu Desert[D]. Lanzhou: Lanzhou Jiaotong University, 2022. [6] 吴敏, 李波扬. 全螺旋灌注桩——螺纹桩竖向承载力初探[J]. 武汉大学学报(工学版), 2002, 35(5): 109-112.WU Min, LI Bo-yang. Primary discussion on vertical load bearing capacity of screwed filling piles[J]. Engineering Journal of Wuhan University, 2002, 35(5): 109-112. [7] 王博宇, 胡志平, 张永辉, 等. 成层土中考虑桩侧土竖向作用的螺纹桩动力响应[J]. 哈尔滨工业大学学报, 2024, 56(9): 161-170.WANG Bo-yu, HU Zhi-ping, ZHANG Yong-hui, et al. Dynamic response of screw pile considering vertical action of pile side soil in layered soil[J]. Journal of Harbin Institute of Technology, 2024, 56(9): 161-170. [8] SHARIF Y U, BROWN M J, CIANTIA M O, et al. Assessing single-helix screw pile geometry on offshore installation and axial capacity[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2021, 174(5): 512-529. [9] 李国维, 赵星宇, 张黎明, 等. 支盘桩加固既有填砂路基深层软土的模型试验研究[J]. 岩土工程学报, 2024, 46(8): 1768-1775.LI Guo-wei, ZHAO Xing-yu, ZHANG Li-ming, et al. Model tests on deep soft ground improvement of existing sand-filled subgrade with squeezed branch piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1768-1775. [10] 王斌, 钱建固, 陈宏伟, 等. 注浆成型螺纹桩抗拔承载特性的数值分析[J]. 岩土力学, 2014, 35(增2): 572-578.WANG Bin, QIAN Jian-gu, CHEN Hong-wei, et al. Numerical analysis of grouting-screw pile uplift bearing capacity[J]. Rock and Soil Mechanics, 2014, 35(S2): 572-578. [11] 孟振, 陈锦剑, 王建华, 等. 砂土中螺纹桩承载特性的模型试验研究[J]. 岩土力学, 2012, 33(增1): 141-145.MENG Zhen, CHEN Jin-jian, WANG Jian-hua, et al. Study of model test on bearing capacity of screw piles in sand[J]. Rock and Soil Mechanics, 2012, 33(S1): 141-145. [12] 陈亚东, 于艳, 孙华圣, 等. 砂土中抗拔螺杆桩承载力及变形特性研究[J]. 地下空间与工程学报, 2024, 20(5): 1581-1588, 1664.CHEN Ya-dong, YU Yan, SUN Hua-sheng, et al. Study on the bearing capacity and deformation characteristics of uplift screw-shaft pile in sand[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(5): 1581-1588, 1664. [13] 孟振. 全螺纹灌注挤土桩施工影响与承载特性研究[D]. 上海: 上海交通大学, 2017.MENG Zhen. Install effects and bearing capacity of drilled displacement piles with a screw-shaped shaft[D]. Shanghai: Shanghai Jiao Tong University, 2017. [14] MOHAJERANI A, BOSNJAK D, BROMWICH D. Analysis and design methods of screw piles: a review[J]. Soils and Foundations, 2016, 56(1): 115-128. https://www.sciencedirect.com/science/article/pii/S003808061600010X [15] LIVNEH B, EL NAGGAR M H. Axial testing and numerical modeling of square shaft helical piles under compressive and tensile loading[J]. Canadian Geotechnical Journal, 2018, 45(8): 1142-1155. [16] HAWKINS K, THORSTEN R. Load test results—Large diameter helical pipe piles[C]//ASCE. Contemporary Topics in Deep Foundations. Reston: ASCE, 2009: 488-495. [17] SAKR M. Performance of helical piles in oil sand[J]. Canadian Geotechnical Journal, 2009, 46(9): 1046-1061. [18] 马甲宽, 胡志平, 任翔, 等. 基于太沙基极限平衡理论的螺纹桩承载力计算[J]. 地下空间与工程学报, 2022, 18(4): 1111-1118, 1145.MA Jia-kuan, HU Zhi-ping, REN Xiang, et al. Calculation of bearing capacity of screw pile based on Terzaghi limit equilibrium theory[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(4): 1111-1118, 1145. [19] 马甲宽, 罗丽娟, 任翔, 等. 基于统一强度理论的螺纹桩承载力计算方法[J]. 上海交通大学学报, 2022, 56(6): 754-763.MA Jia-kuan, LUO Li-juan, REN Xiang, et al. Calculation method of bearing capacity of screw pile based on unified strength theory[J]. Journal of Shanghai Jiaotong University, 2022, 56(6): 754-763. [20] 董天文, 梁力, 王明恕, 等. 极限荷载条件下螺旋桩的螺距设计与承载力计算[J]. 岩土工程学报, 2006, 28(11): 2031-2034.DONG Tian-wen, LIANG Li, WANG Ming-shu, et al. Pitch of screws and bearing capacity of screw piles under ultimate load[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2031-2034. [21] SHAO K, SU Q, LIU J W, et al. Optimization of inter-helix spacing for helical piles in sand[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 936-952. [22] 冯浙. 砂土地基中螺杆桩竖向承载特性的模型试验研究[J]. 建筑科学, 2019, 35(5): 97-102.FENG Zhe. Model test study on vertical bearing characteristics of screw pile in sandy soil[J]. Building Science, 2019, 35(5): 97-102. [23] 杨晓华, 王东清, 张莎莎, 等. 盐湖区高速铁路长短桩复合地基变形特性[J]. 交通运输工程学报, 2024, 24(3): 181-192. doi: 10.19818/j.cnki.1671-1637.2024.03.012YANG Xiao-hua, WANG Dong-qing, ZHANG Sha-sha, et al. Deformation characteristics of long-short pile composite foundation for high-speed railway in salt lake region[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 181-192. doi: 10.19818/j.cnki.1671-1637.2024.03.012 [24] 王曙光, 冯浙, 唐建中, 等. 竖向荷载作用下螺杆灌注桩受压承载机理的试验研究[J]. 岩土工程学报, 2021, 43(2): 383-389.WANG Shu-guang, FENG Zhe, TANG Jian-zhong, et al. Experimental study on bearing mechanism of screw cast-in-place piles under vertical loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 383-389. [25] MA J K, LUO L J, MU T, et al. Experimental study on characteristics of pile-soil interaction in screw piles[J]. Buildings, 2022, 12(12): 2091. [26] 钱建固, 陈宏伟, 贾鹏, 等. 注浆成型螺纹桩接触面特性试验研究[J]. 岩石力学与工程学报, 2013, 32(9): 1744-1749.QIAN Jian-gu, CHEN Hong-wei, JIA Peng, et al. Experimental study of mechanical behaviors of grouting-screw pile interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1744-1749. [27] 赵赟, 张陈蓉, 凌巧龙, 等. 软土地区注浆成型螺纹桩抗拔承载力的计算[J]. 岩土力学, 2015, 36(增1): 334-340.ZHAO Yun, ZHANG Chen-rong, LING Qiao-long, et al. Calculation of uplift capacity of grouting-screw pile in soft clay area[J]. Rock and Soil Mechanics, 2015, 36(S1): 334-340. [28] RAOS N, PRASAD Y V S N, SHETTY M D. The behaviour of model screw piles in cohesive soils[J]. Soils and Foundations, 1991, 31(2): 35-50. https://www.jstage.jst.go.jp/article/sandf1972/31/2/31_2_35/_article [29] SAKR M. Installation and performance characteristics of high capacity helical piles in cohesionless soils[J]. DFI Journal the Journal of the Deep Foundations Institute, 2011, 5(1): 39-57. [30] 胡志平, 王旭, 罗丽娟, 等. 圆形浅基础地基极限承载力理论公式的改进[J]. 公路交通科技, 2014, 31(7): 1-6, 13.HU Zhi-ping, WANG Xu, LUO Li-juan, et al. Modification of formula of ultimate bearing capacity of shallow circular foundation[J]. Journal of Highway and Transportation Research and Development, 2014, 31(7): 1-6, 13. -
下载: