Influence of different internal and external coupling excitations on dynamic characteristics of high-speed railway gearbox housing
-
摘要: 从概率统计和疲劳损伤角度,分别诠释了箱体振动加速度变化特点及动应力变化对箱体不同部位的影响;基于矢量控制理论和机车车辆多体动力学理论,建立了高速列车牵引电机控制模型和考虑柔性箱体的高速列车刚柔耦合模型,通过联合仿真方法搭建了高速列车机电耦合模型;基于核密度估计方法拟合出了箱体振动加速度的概率密度函数曲线;结合箱体材料疲劳试验计算了损伤参数。分析结果表明:箱体小轴承孔上方纵向、大轴承孔上方横向与垂向的加速度概率密度函数均存在由单主峰变为双主峰的过程,且概率密度图像逐渐变宽变矮,说明这3个方向的振动加速度受激励变化影响较大,此外概率密度函数图像出现双主峰时皆包含车轮多边形激励,说明该激励导致振动加速度信号在两侧分布较为密集;小轴承孔上方和油位观察孔处谐波转矩激励的疲劳损伤贡献较明显,使这两处损伤参数约增长0.05,之后随工况变化这两处损伤参数基本保持不变,大轴承孔上方轨道不平顺激励的疲劳损伤贡献最大,损伤参数由0.14增长至0.68,齿面观察孔处车轮多边形激励的疲劳损伤贡献相比其他激励要大,损伤参数由0.19增长至0.60,大轴承孔上方与齿面观察孔两处位置的损伤参数涨幅变化较为显著,因此,在检修时应重点关注。Abstract: The changes in housing vibration acceleration and the influence on various parts of the housing from dynamic stress were interpreted from the perspectives of probability statistics and fatigue damage. Based on vector control theory and multibody dynamics theory for locomotives, a traction motor control model for high-speed train and a rigid-flexible coupling model of high-speed train with a flexible housing were established. The mechatronic coupling model of the high-speed train was constructed through joint simulation. The probability density function curve of housing vibration acceleration was fitted using kernel density estimation. Combined with fatigue testing of housing materials, the damage parameters were calculated. Analysis results show that the probability density functions of vibration acceleration above the small bearing hole in the longitudinal direction, and above the large bearing hole in the horizontal and vertical directions, all undergo a process of changing from a single peak to double peaks. The probability density graphs gradually widen and flatten, indicating that the vibration acceleration in these three directions is significantly affected by excitation changes. When the probability density function exhibits double peaks, they all include wheel polygonal excitation, suggesting that this excitation leads to a more concentrated distribution of vibration acceleration signals on both sides. The fatigue damage contribution from harmonic torque excitation above the small bearing hole and at the oil level observation hole is more prominent, with the damage parameters increasing by about 0.05 at these two locations. These damage parameters remain almost unchanged with the change in working conditions. The fatigue damage contribution from track irregularity excitation above the large bearing hole is the largest, with the damage parameters increasing from 0.14 to 0.68. The fatigue damage contribution from wheel polygonal excitation at the tooth surface observation hole is larger compared to other excitations, with the damage parameters increasing from 0.19 to 0.60. The change in damage parameters at the large bearing hole and the tooth surface observation hole is more significant, so special attention should be given to these areas during maintenance.
-
表 1 工况激励类型
Table 1. Incentive types for working conditions
工况 激励类型 1 理想转矩激励 2 谐波转矩激励 3 谐波转矩+轨道不平顺激励 4 谐波转矩+车轮多边形激励 5 谐波转矩+复合轮轨激励 表 2 各个工况下齿轮接触特性
Table 2. Gear contact characteristics under various working conditions
工况 圆周力均方根值/N 轴向力均方根值/N 径向力均方根值/N 传递误差峰峰值/um 1 12 029.30 3 921.74 4 723.70 6.01 2 12 039.00 3 952.15 4 754.41 13.39 4 12 060.80 3 962.02 4 761.15 17.64 -
[1] 黄冠华. 高速列车齿轮传动系统动态特性研究[D]. 成都: 西南交通大学, 2015.HUANG Guan-hua. Study on dynamic characteristics of gear transmission system of high-speed train[D]. Chengdu: Southwest Jiaotong University, 2015. [2] 范军, 宋瑞, 谷安斯, 等. 高速动车组齿轮箱体振动特性研究[J]. 铁道技术监督, 2013, 41(12): 31-34, 40.FAN Jun, SONG Rui, GU An-si, et al. Study on the vibration feature of gearbox house in high-speed EMU[J]. Railway Technical Supervision, 2013, 41(12): 31-34, 40. [3] 黄冠华, 张卫华, 宋纾崎, 等. 高速列车驱动齿轮内部动态激扰影响分析[J]. 机械传动, 2014, 38(1): 92-95, 111.HUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, et al. Analysis of effect of inner dynamic excitation on driving gear of high-speed train[J]. Journal of Mechanical Transmission, 2014, 38(1): 92-95, 111. [4] 周越, 王曦, 侯宇, 等. 内部激励下高速列车齿轮箱振动行为及轴承载荷特性实验研究[J]. 振动与冲击, 2023, 42(13): 242-250.ZHOU Yue, WANG Xi, HOU Yu, et al. Test study on vibration behavior and bearing load characteristics of high-speed train gearbox under internal excitation[J]. Journal of Vibration and Shock, 2023, 42(13): 242-250. [5] ZHU W G, LIN H, SUN W, et al. Vibration performance of traction gearbox of a high-speed train: theoretical analysis and experiments[J]. Actuators, 2023, DOI: 10.3390/act12030103. [6] 胡玉飞, 张建超, 陈湛, 等. 内部激励下高速动车齿轮箱振动响应评估[J]. 北京交通大学学报, 2022, 46(4): 148-156.HU Yu-fei, ZHANG Jian-chao, CHEN Zhan, et al. Evaluation of gearbox vibration response in high-speed train under internal excitation[J]. Journal of Beijing Jiaotong University, 2022, 46(4): 148-156. [7] MOON K H, LEE D H, KIM J C, et al. Analysis on the vibration characteristics of reduction gear units for high-speed trains[J]. Journal of the Korean Society for Precision Engineering, 2013, 30(7): 694-701. [8] 赵心颖, 林飞, 杨中平, 等. 高速列车牵引传动系统机电耦合振动特性研究[J]. 铁道学报, 2018, 40(9): 40-47.ZHAO Xin-ying, LIN Fei, YANG Zhong-ping, et al. Study on mechanism and suppression of electromechanical coupling vibration in traction drive system of high-speed train[J]. Journal of the China Railway Society, 2018, 40(9): 40-47. [9] WU H, WU P B, XU K, et al. Research on vibration characteristics and stress analysis of gearbox housing in high-speed trains[J]. IEEE Access, 2019, 7: 102508-102518. [10] 朱海燕, 尹必超, 胡华涛, 等. 谐波转矩对高速列车齿轮箱体与牵引电机振动特性的影响[J]. 交通运输工程学报, 2019, 19(6): 65-76. doi: 10.19818/j.cnki.1671-1637.2019.06.007ZHU Hai-yan, YIN Bi-chao, HU Hua-tao, et al. Effects of harmonic torque on vibration characteristics of gear box housing and traction motor of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 65-76. doi: 10.19818/j.cnki.1671-1637.2019.06.007 [11] 尹必超. 牵引电机谐波转矩对高速列车转向架关键部件振动特性研究[D]. 南昌: 华东交通大学, 2020.YIN Bi-chao. Research on harmonic torque of traction motor to vibration characteristics of key components of bogie of high-speed train[D]. Nanchang: East China Jiaotong University, 2020. [12] 吴昊. 高速列车牵引传动系统动力学建模与齿轮箱振动特性分析[D]. 成都: 西南交通大学, 2020.WU Hao. High-speed train traction drive system dynamics modeling and gearbox vibration characteristics analysis[D]. Chengdu: Southwest Jiaotong University, 2020. [13] 杨广雪, 李广全, 刘志明, 等. 轮轨激励下高速列车齿轮箱箱体振动特性分析研究[J]. 铁道学报, 2017, 39(11): 46-52.YANG Guang-xue, LI Guang-quan, LIU Zhi-ming, et al. Vibration characteristics analysis of gearbox housing system of high-speed train subjected to wheel-rail excitation[J]. Journal of the China Railway Society, 2017, 39(11): 46-52. [14] LI X Q, WANG X, XU C, et al. Dynamic response analysis of high-speed train gearbox housing based on equivalent acceleration amplitude method[J]. World Journal of Engineering and Technology, 2017, 5(2): 254-268. [15] 寻麒儒, 魏静, 吴昊, 等. 曲线通过参数对高速列车牵引齿轮传动系统动力学响应影响研究[J]. 振动与冲击, 2022, 41(13): 283-293.XUN Qi-ru, WEI Jing, WU Hao, et al. Effects of curve passing parameters on dynamic response of traction gear transmission system of high-speed train[J]. Journal of Vibration and Shock, 2022, 41(13): 283-293. [16] 张建超, 胡玉飞, 陈湛, 等. 外部激励下齿轮箱振动分析与动应力评估[J]. 机械设计与制造, 2023(7): 116-124.ZHANG Jian-chao, HU Yu-fei, CHEN Zhan, et al. Vibration analysis and dynamic stress evaluation of gearbox under external excitation[J]. Machinery Design and Manufacture, 2023(7): 116-124. [17] 高闯, 孙守光, 任尊松, 等. 车轮多边形对高速列车车轴疲劳强度影响研究[J]. 机械工程学报, 2023, 59(6): 185-193.GAO Chuang, SUN Shou-guang, REN Zun-song, et al. Study on the influence of wheel polygon on the fatigue strength of high-speed train axle[J]. Journal of Mechanical Engineering, 2023, 59(6): 185-193. [18] WANG Z W, MEI G M, ZHANG W H, et al. Effects of polygonal wear of wheels on the dynamic performance of the gearbox housing of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(6): 1852-1863. [19] 邹航宇. 考虑车轮失圆的高速列车齿轮箱振动特性与疲劳强度研究[D]. 成都: 西南交通大学, 2018.ZOU Hang-yu. Study on vibration characteristics and fatigue strength of high-speed train gearbox considering out-of-round wheel[D]. Chengdu : Southwest Jiaotong University, 2018. [20] 朱海燕, 朱志和, 邬平波, 等. 服役工况下高速动车组齿轮箱箱体振动特性分析[J]. 噪声与振动控制, 2021, 41(2): 15-20, 27.ZHU Hai-yan, ZHU Zhi-he, WU Ping-bo, et al. Vibration characteristics analysis of high-speed EMU gearbox housings under service conditions[J]. Noise and Vibration Control, 2021, 41(2): 15-20, 27. [21] 刘杰, 刘世军, 郭熛, 等. 基于有限元的高铁齿轮箱箱体载荷计算与结构分析[J]. 机械传动, 2016, 40(2): 77-81.LIU Jie, LIU Shi-jun, GUO Biao, et al. Structural analysis and load calculation of CRH380 high-speed rail gearbox based on finite element[J]. Journal of Mechanical Transmission, 2016, 40(2): 77-81. [22] ZHU W G, SUN W, WW H. Vibration and stress response of high-speed train gearboxes under different excitations[J]. Applied Sciences, 2022, 12(2): 712. [23] 黄冠华, 王兴宇, 梅桂明, 等. 内外激励下高速列车齿轮箱箱体动态响应分析[J]. 机械工程学报, 2015, 51(12): 95-100.HUANG Guan-hua, WANG Xing-yu, MEI Gui-ming, et al. Dynamic response analysis of gearbox housing system subjected to internal and external excitation in high-speed train[J]. Journal of Mechanical Engineering, 2015, 51(12): 95-100. [24] 康焱, 石照耀. 齿轮啮合冲击过程分析及评价方法[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(5): 440-447.KANG Yan, SHI Zhao-yao. Sequential analysis and evaluation method of gear impacts[J]. Journal of Tianjin University (Science and Technology), 2013, 46(5): 440-447. [25] 王华, 崔利通. 高速列车传动系统机电耦合仿真与分析[J]. 机车电传动, 2015(2): 31-36.WANG Hua, CUI Li-tong. Simulation and analysis of electromechanical integration for drive system in high-speed trains[J]. Electric Drive for Locomotives, 2015(2): 31-36. [26] 王文勋. 动车组牵引电机转矩脉动研究[D]. 北京: 北京交通大学, 2015.WANG Wen-xun. Research on torque ripple of traction motors in electric multiple units[D]. Beijing: Beijing Jiaotong University, 2015. [27] 胡晓依, 任海星, 成棣, 等. 动车组车轮多边形磨耗形成与发展过程仿真研究[J]. 中国铁道科学, 2021, 42(2): 107-115.HU Xiao-yi, REN Hai-xing, CHENG Di, et al. Numerical simulation study on the formation and development of polygonal wear of EMU wheels[J]. China Railway Science, 2021, 42(2): 107-115. [28] 万里荣. 齿轮副动态激励对高速列车齿轮箱体振动特性研究[D]. 南昌: 华东交通大学, 2019.WAN Li-rong. Study gear pair dynamic excitation on the vibration characteristics of high-speed train gearbox housing[D]. Nanchang: East China Jiaotong University, 2019. [29] 王文静, 闫瑞国, 李广全, 等. 中国标准动车组齿轮箱箱体动态特性分析研究[J]. 振动工程学报, 2019, 32(3): 534-539.WANG Wen-jing, YAN Rui-guo, LI Guang-quan, et al. Dynamic characteristics of Chinese standard EMU gearbox housing[J]. Journal of Vibration Engineering, 2019, 32(3): 534-539. [30] 于传强, 郭晓松, 张安德, 等. 基于估计点的滑动窗宽核密度估计算法[J]. 兵工学报, 2009, 30(2): 231-235.YU Chuan-qiang, GUO Xiao-song, ZHANG An-de, et al. Slide bandwidth kernel density estimation algorithm based on estimate point[J]. Acta Armamentarii, 2009, 30(2): 231-235. [31] 李广全. 高速列车齿轮箱箱体动态特性及疲劳可靠性研究[D]. 北京: 北京交通大学, 2018.LI Guang-quan. Study on dynamic characteristics and fatigue reliability of high-speed train gearbox housing[D]. Beijing: Beijing Jiaotong University, 2018. [32] 王萌, 李强, 孙守光. 耦合作用下各载荷对结构疲劳损伤影响程度的评估方法[J]. 中国铁道科学, 2015, 36(3): 94-99.WANG Meng, LI Qiang, SUN Shou-guang. Evaluation method for influence degree of each load on fatigue damage of mechanical structure under coupling effect[J]. China Railway Science, 2015, 36(3): 94-99. [33] 朱海燕, 黎洁, 尹必超, 等. 牵引电机悬挂参数对高速列车牵引传动部件振动特性的影响[J]. 交通运输工程学报, 2023, 23(1): 156-169. doi: 10.19818/j.cnki.1671-1637.2023.01.012ZHU Hai-yan, LI Jie, YIN Bi-chao, et al. Influence of suspension parameters of traction motoron vibration characteristics of traction drive components of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 156-169. doi: 10.19818/j.cnki.1671-1637.2023.01.012 -
下载: