GNSS interference detection method based on combined processing of civil aviation ADS-B multi-quality indicator and multi-features
-
摘要: 为解决导航卫星信号微弱,极易受到各种有意或无意的干扰,造成航空安全隐患、航班延误和运行效率下降的问题,利用全球导航卫星系统(GNSS)射频干扰导致的飞机航迹异常以及广播式自动相关监视(ADS-B)数据中导航质量指标的变化特性,在兼容DO-260、DO-260A/B不同质量指标的情况下,给出了一种基于ADS-B数据多质量指标多特征联合处理的GNSS干扰检测方法;在GNSS干扰环境下提取ADS-B数据变化特征,通过检测导航质量指标的波动持续时间特征、质量指标变化同时航迹断裂特征以及多种质量指标同时下降特征等异常行为筛选出潜在干扰航班;对潜在航班进行干扰特征点提取,考虑到干扰航班在空间上具有聚集性,再利用MeanShift聚类方法实现了干扰航班的检测。试验结果表明:所提多质量指标多特征联合处理的GNSS干扰检测方法与单质量指标干扰检测方法相比精确率提高21.3%,能有效降低误检率,与熵权法相比查全率提高7%,在保证误检率不增加的前提下能有效降低漏检率, 同时所提方法无需大量数据进行预训练,检测所需时间相比机器学习方法降低了98.4%,具有较好的实时性和工程应用价值,可为民用航空无线电干扰检测中的受干扰航班、受干扰时间和位置的确定提供解决方案。Abstract: To solve the issue of weak navigation satellite signals, which were highly susceptible to various intentional or unintentional interferences that pose aviation safety risks, cause flight delays, and reduce operational efficiency, the abnormal trajectory caused by global navigation satellite system (GNSS) radio frequency interference and the variations in navigation quality indicators in automatic dependent surveillance-broadcast (ADS-B) data were utilized, a GNSS interference detection method based on the joint processing of multiple quality indicators and features of ADS-B data was proposed, which was compatible with various quality indicators from DO-260, and DO-260A/B. In a GNSS interference environment, variation features from ADS-B data were extracted. Potential interfering flights were identified by detecting abnormal behaviors such as the fluctuation duration of navigation quality indicators, simultaneous quality indicator changes with trajectory breakage, and simultaneous decreases in multiple quality indicators. The potential interfering flights were further analyzed by extracting interference feature points. Considering the spatial aggregation of interfering flights, the MeanShift clustering method is then used to detect the interfering flights. Experimental results show that the proposed GNSS interference detection method based on joint processing of multiple quality indicators and features improves precision by 21.3% compared to single quality indicator methods, effectively reducing the false detection rate. Compared to the entropy weighting method, the recall rate improves by 7%, and the method can effectively reduce the miss detection rate without increasing the false detection rate. Furthermore, this method does not require large datasets for pre-training and reduces detection time by 98.4% compared to machine learning methods, offering better real-time performance and engineering application value. It can provide solutions for determining the interfering flights, interference times, and locations in civil aviation radio interference detection.
-
表 1 不同机载ADS-B硬件版本支持的导航质量指标
Table 1. Navigation quality indicators supported by different ADS-B on-board hardware
导航质量指标 缩写 英文全称 分类级别 对应的机载硬件版本 导航不确定性级别 NUCp Navigation Uncertain Category for Position 0~9 DO-260 导航位置准确度级别 NACp Navigation Accuracy Category for Position 0~11 DO-260A/B 导航速度准确度级别 NACv Navigation Accuracy Category for Velocity 0~4 DO-260A/B 导航完好性级别 NIC Navigation Integrity Category 0~11 DO-260A/B 源完好性级别 SIL Source Integrity Level 0~3 DO-260A/B 系统设计确信度 SDA System Design Assurance 0~3 DO-260B 表 2 ADS-B导航质量指标特征分类
Table 2. Features classification of ADS-B navigation quality indicators
序号 全称 备注 1 质量指标正常 指标位于正常值范围之内;依据中国民航局下发的《广播式自动相关监视(ADS-B)管制运行规程》规定,即NIC不小于6,NUCp不小于5,SIL不小于2,且指标值保持恒定 2 质量指标轻微波动 指标位于正常值范围之内,并在正常范围内波动 3 质量指标异常 指标超出正常值范围 表 3 ADS-B数据异常航迹分类
Table 3. Classification of ADS-B abnormal trajectory
序号 全称 现象 可能的产生原因 1 航迹中断 航迹断裂,并持续一定时间 航班机载ADS-B系统受地面障碍物的遮蔽、或地表曲率遮蔽影响,导致空地数据传输中断,出现航迹中断现象;机载GNSS系统受到干扰,无法获取GNSS位置信息,ADS-B无法通过其他机载导航系统获取位置信息,进而停止发送位置报告[24] 2 航迹偏移 航迹产生一定幅度、一定角度的偏移 机载GNSS系统受到干扰,无法获取GNSS位置信息,ADS-B通过其他机载导航系统(通常为机载惯性导航系统)获取位置信息并发送。由于机载惯性导航装置其位置信息与GNSS位置信息在存在着系统性误差,从而导致航迹出现整体偏移 表 4 ADS-B机载硬件版本受GNSS干扰影响特征分类
Table 4. GNSS interference features classification of ADS-B on board hardware versions
干扰特征 适用版本 具体现象 特征1 DO260、DO260A/B 受干扰时,NUCp或NIC指标发生波动,但是航迹保持正常 特征2 DO260、DO260A/B 受干扰时,NUCp或NIC指标发生波动,航迹发生中断或者航迹发生偏移以及航迹位置精度下降 特征3 DO260A/B 受干扰时,多个指标发生波动,且波动时间相近 表 5 基于多特征联合处理的混淆矩阵
Table 5. Confusion matrix based on combined processing for multi-features
预测样本 真实样本 干扰航班 正常航班 预测干扰航班 Tp=0.839 Fp=0.002 预测正常航班 FN=0.161 TN=0.998 表 6 基于多特征联合处理的试验结果
Table 6. Experimental results of combined processing for multi-features
方法 精确率 准确率 查全率 F1分数 检测时间/s 单指标检测法 0.750 0.982 0.967 0.845 1.2 熵权法 0.909 0.985 0.769 0.833 1.5 基于LSTM的干扰检测方法 0.940 0.981 0.987 0.963 158.2 本文方法 0.963 0.990 0.839 0.896 2.6 -
[1] CARROLL J V. Vulnerability assessment of the US transportation infrastructure that relies on the global positioning system[J]. Journal of Navigation, 2003, 56(2): 185-193. [2] OCHIENG W Y, SAUER K, WALSH D, et al. GPS integrity and potential impact on aviation safety[J]. Journal of Navigation, 2003, 56(1): 51-65 [3] CLAY C, KHAN M, BAJRACHARYA B. A look into the vulnerabilities of automatic dependent surveillance-broadcast[C]// IEEE. 2023 IEEE 13th Annual Computing and Communication Workshop and Conference. New York: IEEE, 2023: 933-938. [4] LIU Z X, LO S, WALTER T, Characterization of ADS-B performance under GNSS interference[C]//ION. Proceedings of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation. Manassas: ION, 2020: 3581-3591. [5] 张满. 针对GPS信号干扰对ADS-B影响及干扰源定位的分析研究[J]. 无线通信技术, 2024, 33(2): 39-43.ZHANG Man. Analysis and research on interference and source localization of ADS-B data in air traffic control[J]. Wireless Communication Technology, 2024, 33(2): 39-43. [6] ALI S, SCHUSTER W, OCHIENG W, et al. Analysis of anomalies in ADS-B and its GPS data[J]. GPS Solutions, 2016, 20(3): 429-438. [7] ALA D, BITSIKAS E, TEDONGMO B. Detecting GPS jamming incidents in OpenSky data[J]. EPiC Series in Computing, 2019, 67: 97-108. [8] LLUKĔS P, TOPKOVÁ T, VLČEK T, et al. Recognition of GNSS jamming patterns in ADS-B data[C]//IEEE. 2020 New Trends in Civil Aviation. New York: IEEE, 2020: 9-15 [9] LIU Z X, LO S, WALTER T. GNSS interference detection using machine learning algorithms on ADS-B data[C]//ION. Proceedings of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation. Manassas: ION, 2021: 305-4315. [10] LIU Z X, LO S, WALTER T, GNSS interference source localization using ADS-B data[C]//ION. Proceedings of the 2022 International Technical Meeting of the Institute of Navigation. Manassas: ION, 2022: 158-167. [11] LIU Z X, LO S, WALTER T, et al Real-time detection and localization of GNSS interference source[C]//ION. Proceedings of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation. Manassas: ION, 2022: 3731-3742. [12] 何炜琨, 李志强, 王晓亮. 基于ADS-B导航完好性指标多级GNSS干扰监测方法[J]. 信号处理, 2023, 39(3): 472-481.HE Wei-kun, LI Zhi-qiang, WANG Xiao-liang. Multilevel GNSS interference monitoring method based on ADS-B navigation integrity index[J]. Journal of Signal Processing, 2023, 39(3): 472-481. [13] MATĚJOVIE M, HOSPODKA J, PLENINGER S, et al. Utilization of correlation between NACp and NIC parameters for GNSS jamming detection[C]// IEEE. 2022 New Trends in Civil Aviation. New York: IEEE, 2022: 69-73. [14] ZUO D, SHI C, JIN K Y, et al. A machine learning GNSS interference detection method based on ADS-B multi-index features[C]//IEEE. 2023 Integrated Communication, Navigation and Surveillance Conference. New York: IEEE, 2023: 1-11. [15] 李志强. 基于ADS-B质量指标的GNSS干扰监测方法[D]. 天津: 中国民航大学, 2023.LI Zhi-qiang. GNSS interference monitoring method based on ADS-B quality indicators[D]. Tianjin: Civil Aviation University of China, 2023. [16] LV Z P, WANG L L, NI Y D. Navigation data resource availability of ADS-B[C]//IEEE. Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering. New York: IEEE, 2011: 572-575. [17] NINKAESORN W, POOLGATE S, LUNZEAR I, et al. Automatic dependent surveillance-broadcast (ADS-B) data observation and quality assessment in Thailand[C]//IEEE. 2021 36th International Technical Conference on Circuits/ Systems, Computers and Communications. New York: IEEE, 2021: 1-4. [18] STEINER J, NAGY I. Discrete mathematical model for GNSS Interference detection using ADS-B quality parameters[C]// ION. Proceedings of the 36th International Technical Meeting of the Satellite Division of the Institute of Navigation. Manassas: ION, 2023: 4145-4152. [19] LI J Q, WANG H X, DAN Z Q, et al. Civil aviation GNSS interference detection and location based on genetic algorithm using ADS-B Data[C]//ION. Proceedings of the 36th International Technical Meeting of the Satellite Division of the Institute of Navigation. Manassas: ION, 2023: 4168-4182. [20] LIU Z X, LO S, BLANCH J, Localizing the October 2022 Texas jamming incident using ADS-B data with an improvement in model confidence[C]//ION. Proceedings of the 2024 International Technical Meeting of the Institute of Navigation. Manassas: ION, 2024: 524-531. [21] CAI K Q, DI Z, ZHU Y B, et al. An attention-based convolutional network framework for detection and localization of GNSS interference sources[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 2995-3011. [22] LIU Z X, LO S, WALTER T. GNSS interference characterization and localization using OpenSky ADS-B data. [C]//OLIVE X, SPINIELLI E, KOELLE R. Proceedings of the 8th OpenSky Symposium. Brussels: OpenkSky, 2020: 10. [23] 李佳晟. 基于多元特征的ADS-B异常检测关键技术研究[D]. 成都: 电子科技大学, 2023.LI Jia-sheng. Research on key technologies of multivariate feature based ADS-B anomaly detection[D]. Chengdu: University of Electronic Science and Technology of China, 2023. [24] JONÁŠ P, VITAN V. Detection and localization of GNSS radio interference using ADS-B data[C]//IEEE. 2019 International Conference on Military Technologies. New York: IEEE, 2019: 1-5. [25] CHEN Y H, LIU Z X, JUAN B, et al. A RFI testbed for examining GNSS integrity in the various environments[C]//ION. Proceedings of the 2023 International Technical Meeting of the Institute of Navigation. Manassas: ION, 2023: 1032-1042. [26] LIU Z X, CHEN Y H, LO S, et al. Investigation of GPS interference events with refinement on the localization algorithm[C]//ION. Proceedings of the 2023 International Technical Meeting of the Institute of Navigation. Manassas: ION, 2023: 327-338. [27] TABASSUM A, ALLEN N, SEMKE W. ADS-B message contents evaluation and breakdown of anomalies[C]//IEEE. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference. New York: IEEE, 2017: 1-8. [28] 高星宇. 飞行目标的异常航迹检测研究于分析[D]. 西安: 西安电子科技大学, 2022.GAO Xing-yu. Research and analysis on abnormal track detection of flying targets[D]. Xi'an: Xidian University, 2022. [29] 王兵. ADS-B历史飞行轨迹数据清洗方法[J]. 交通运输工程学报, 2020, 20(4): 217-226. doi: 10.19818/j.cnki.1671-1637.2020.04.018WANG Bing. Data cleaning method of ADS-B historical flight trajectories[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 217-226. doi: 10.19818/j.cnki.1671-1637.2020.04.018 [30] 张潇月, 焦洋. 基于QAR数据的GPS信号丢失分析方法[J]. 民航学报, 2021, 5(1): 44-47, 21.ZHANG Xiao-yue, JIAO Yang. A GPS signal loss analysis method based on QAR data[J]. Journal of Civil Aviation, 2021, 5(1): 44-47, 21. -
下载: