Static performance test of new separated beam-track slab structure for high-speed maglev
-
摘要: 为解决高速磁浮梁轨一体轨道梁制造工序复杂、施工难度大及轨面线形调整困难等问题,提出一种桥梁与轨道分离式(简称“梁轨分离式”)轨道板;为了解新型梁轨分离式轨道板的静力性能,设计并开展了足尺模型试验,测量纵横梁式混凝土轨道板、钢筋和钢扣件系统在不同荷载下的位移和应力,分析了其承载能力、破坏特征和关键部位应力分布规律;基于有限元软件ABAQUS建立轨道板精细化数值模型,开展了设计参数敏感性分析,研究了钢筋直径和栓钉直径对新型轨道板静力性能的影响,对比不同钢筋直径和栓钉直径下轨道板的位移及各部件应力分布,给出了新型轨道板结构参数的合理取值。研究结果表明:在设计荷载下,轨道板处于线弹性阶段,位移峰值为0.11 mm;在3倍设计荷载下,混凝土横梁首次出现微裂缝;在5倍设计荷载下,新型轨道板仍处于带裂缝工作阶段,位移峰值为0.46 mm,小于规范容许值0.516 mm;新型梁轨分离式轨道板的承载力满足设计要求,承载力具有较高富余量;在正常运营状态下,磁浮列车荷载主要由混凝土轨道板承受,轨道板各构件受力明确,局部效应明显;适当增加钢筋直径可提高轨道板整体刚度,减小各构件的应力;增加栓钉直径对轨道板静力性能影响较低。研究结果可为新型梁轨分离式轨道板设计提供参考。Abstract: To address the complex manufacturing process, high construction difficulty, and difficulty in adjusting track surface alignment in the integrated beam-track structure for high-speed maglev, a new separated beam-track slab (abbreviated as separated beam-track slab) was proposed. A full-scale model test of the separated beam-track slab was designed and conducted to characterize its static performance. Displacement and stress of the grid concrete slab, reinforcement, and steel fastener system under various load levels were measured. Bearing capacity, failure characteristics, and stress distribution in critical regions were analyzed. A refined finite element model of the slab was established using ABAQUS. Sensitivity analyses were performed for structural parameters. Effects of reinforcement diameter and shear stud diameter on static performance were investigated. Displacements and stress distributions under different diameters were compared, and reasonable structural parameters were suggested. Analysis results show that the slab is in a linear elastic state under the design load, with a peak displacement of 0.11 mm. The concrete lateral beam shows micro-cracks for the first time under three times the design load. Under five times the design load, the slab remains operable in a cracked state, with a peak displacement of 0.46 mm, which is below the allowable limit of 0.516 mm. The slab meets the design requirement and has a sufficient capacity margin. Under normal operational state, the maglev train load is mainly borne by the concrete slab. Stress mechanisms of components are clear, and local effects are apparent. Increasing reinforcement diameter can enhance global stiffness and reduce component stress, while shear stud diameter has a minimal effect on static performance. These findings provide reference values for the design of the new separated beam-track slab.
-
表 1 钢材力学性能
Table 1. Mechanical properties of steel
试件 试件平均厚度/mm 屈服强度/MPa 抗拉强度/MPa 弹性模量/GPa 滑行板 10 304 448 204 钢扣件 20 376 525 225 表 2 不同钢筋直径下混凝土轨道板受力
Table 2. Stresses of concrete track slab under different reinforced diameters
纵向受力钢筋直径/mm 16 20 纵横梁式混凝土轨道板最大位移/mm 0.088 0.085 混凝土横梁最大拉应力/MPa 1.073 1.012 混凝土横梁最大压应力/MPa 4.817 4.600 纵梁受力钢筋最大Mises应力/MPa 1.895 1.783 横梁受力钢筋最大Mises应力/MPa 4.451 4.086 栓钉最大Mises应力/MPa 12.850 12.270 表 3 不同栓钉直径下混凝土轨道板受力
Table 3. Effects of different bolt diameters on the concrete track slab
栓钉直径/mm 16 20 纵横梁式混凝土轨道板最大位移/mm 0.088 0.087 混凝土横梁最大拉应力/MPa 1.073 1.046 混凝土横梁最大压应力/MPa 4.817 4.881 纵梁受力钢筋最大Mises应力/MPa 1.895 1.808 横梁受力钢筋最大Mises应力/MPa 4.451 4.294 栓钉最大Mises应力/MPa 12.850 12.556 -
[1] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008 XIONG Jia-yang, DENG Zi-gang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008 [2] 熊嘉阳, 沈志云. 中国高速铁路的崛起和今后的发展[J]. 交通运输工程学报, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002XIONG Jia-yang, SHEN Zhi-yun. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002 [3] DING S, EBERHARD P, SCHNEIDER G, et al. Development of new electromagnetic suspension-based high-speed maglev vehicles in China: historical and recent progress in the field of dynamical simulation[J]. International Journal of Mechanical System Dynamics, 2023, 3(2): 97-118. doi: 10.1002/msd2.12069 [4] LI F, SUN Y, XU J, et al. Control methods for levitation system of EMS-type maglev vehicles: an overview[J]. Energies, 2023, 16(7): 2995. doi: 10.3390/en16072995 [5] 熊嘉阳, 沈志云, 池茂儒, 等. 高速磁悬浮列车技术综述[J]. 交通运输工程学报, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001XIONG Jia-yang, SHEN Zhi-yun, CHI Mao-ru, et al. Review on high-speed maglev train technology[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001 [6] 吴祥明. 高速磁浮上海示范线的建设[J]. 同济大学学报(自然科学版), 2002, 30(7): 814-818.WU Xiang-ming. Construction of Shanghai maglev demonstration line[J]. Journal of Tongji University (Natural Science), 2002, 30(7): 814-818. [7] 余浩伟, 寇峻瑜, 李艳. 600 km/h高速磁浮在国内的适应性及工程化发展[J]. 铁道工程学报, 2020, 37(12): 16-20, 88.YU Hao-wei, KOU Jun-yu, LI Yan. Adaptability and engineering development of 600 km/h high-speed maglev in China[J]. Journal of Railway Engineering Society, 2020, 37(12): 16-20, 88. [8] 牟瀚林, 张一敏, 徐绪宝, 等. 高速磁浮铁路试验线建设方案研究[J]. 铁道工程学报, 2023, 40(8): 44-49.MU Han-lin, ZHANG Yi-min, XU Xu-bao, et al. Study on construction scheme of high-speed maglev railway test line[J]. Journal of Railway Engineering Society, 2023, 40(8): 44-49. [9] 伍卫凡. 高速磁浮与高速轮轨系统主要技术参数对比分析[J]. 铁道标准设计, 2023, 67(11): 16-23.WU Wei-fan. Comparison analysis of main technical parameters between the high-speed maglev and high-speed wheel rail system[J]. Railway Standard Design, 2023, 67(11): 16-23. [10] 翟婉明, 赵春发, 蔡成标. 磁浮列车与轮轨高速列车对线桥动力作用的比较研究[J]. 交通运输工程学报, 2001, 1(1): 7-12. https://transport.chd.edu.cn/article/id/200101002ZHAI Wan-ming, ZHAO Chun-fa, CAI Cheng-biao. On the comparison of dynamic effects on bridges of maglev trains with high-speed wheel/rail trains[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 7-12. https://transport.chd.edu.cn/article/id/200101002 [11] 倪萍, 许超超, 何军, 等. 超高速磁浮车-轨道梁竖向耦合振动分析[J]. 铁道科学与工程学报, 2019, 16(6): 1361-1368.NI Ping, XU Chao-chao, HE Jun, et al. Vertical coupling vibration analysis of ultra high-speed maglev vehicle guideway[J]. Journal of Railway Science and Engineering, 2019, 16(6): 1361-1368. [12] 付善强, 梁鑫, 丁叁叁. 高速磁浮车-轨耦合系统动态机理与振动响应[J]. 同济大学学报(自然科学版), 2023, 51(3): 314-320, 384.FU Shan-qiang, LIANG Xin, DING San-san. Dynamic mechanism and vibration response of high-speed maglev vehicle guideway coupling system[J]. Journal of Tongji University (Natural Science), 2023, 51(3): 314-320, 384. [13] HUANG J Y, WU Z W, SHI J, et al. Influence of track irregularities in high-speed maglev transportation systems[J]. Smart Structures and Systems, 2018, 21(5): 571-582. [14] ZHANG L, HUANG J Y. Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method[J]. Engineering Structures, 2019, 180: 1-17. doi: 10.1016/j.engstruct.2018.11.031 [15] 韩艳, 卜秀孟, 王力东, 等. 高速磁浮列车-轨道梁耦合系统轨道不平顺敏感波长研究[J]. 振动与冲击, 2024, 43(5): 1-11, 19.HAN Yan, BU Xiu-meng, WANG Li-dong, et al. High-speed maglev train-track beam coupled system track irregularity sensitive wavelengths[J]. Journal of Vibration and Shock, 2024, 43(5): 1-11, 19. [16] 陈琛, 徐俊起, 荣立军, 等. 轨道随机不平顺下磁浮车辆非线性动力学特性[J]. 交通运输工程学报, 2019, 19(4): 115-124. https://transport.chd.edu.cn/article/id/200101002CHEN Chen, XU Jun-qi, RONG Li-jun, et al. Nonlinear dynamics characteristics of maglev vehicle under track random irregularities[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 115-124. https://transport.chd.edu.cn/article/id/200101002 [17] SUN Y G, HE Z Y, XU J Q, et al. Dynamic analysis and vibration control for a maglev vehicle-guideway coupling system with experimental verification[J]. Mechanical Systems and Signal Processing, 2023, 188: 109954. doi: 10.1016/j.ymssp.2022.109954 [18] 姜卫利, 高芒芒. 轨道梁参数对磁浮车-高架桥垂向耦合动力响应的影响研究[J]. 中国铁道科学, 2004, 25(3): 71-75.JIANG Wei-li, GAO Mang-mang. Study of the effect of track beam parameters on vertical coupled dynamic response of maglev vehicle-viaduct[J]. China Railway Science, 2004, 25(3): 71-75. [19] DAI J, LIM J G Y, ANG K K. Dynamic response analysis of high-speed maglev-guideway system[J]. Journal of Vibration Engineering & Technologies, 2023, 11(6): 2647-2658. [20] 王淼, 宋振森, 滕念管. 高速磁浮列车-柔性轨道梁横向耦合振动[J]. 铁道科学与工程学报, 2022, 19(2): 301-309.WANG Miao, SONG Zhen-sen, TENG Nian-guan. Lateral coupling vibration of high-speed maglev train and flexible guideway-beam[J]. Journal of Railway Science and Engineering, 2022, 19(2): 301-309. [21] 文泉, 王春江, 孙向东, 等. 高速磁浮整体式预应力轨道梁温度场与变形分析[J]. 铁道科学与工程学报, 2022, 19(5): 1168-1176.WEN Quan, WANG Chun-jiang, SUN Xiang-dong, et al. Temperature field and deformation of high-speed maglev prestressed overall guideway beam[J]. Journal of Railway Science and Engineering, 2022, 19(5): 1168-1176. [22] 赵春发, 翟婉明, 蔡成标. 磁浮车辆/高架桥垂向耦合动力学研究[J]. 铁道学报, 2001, 23(5): 27-33.ZHAO Chun-fa, ZHAI Wan-ming, CAI Cheng-biao. Maglev vehicle/elevated-beam guideway vertical coupling dynamics[J]. Journal of the China Railway Society, 2001, 23(5): 27-33. [23] 梁鑫, 马卫华. 2种磁轨关系的磁浮车桥相互作用比较分析[J]. 铁道科学与工程学报, 2017, 14(4): 845-851.LIANG Xin, MA Wei-hua. Comparative analysis of two kinds of magnet-track relationship of maglev vehicle and guideway interaction[J]. Journal of Railway Science and Engineering, 2017, 14(4): 845-851. [24] 杨国静, 郑晓龙, 李艳. 高速磁浮轨道梁结构选型研究[J]. 铁道工程学报, 2021, 38(2): 68-73.YANG Guo-jing, ZHENG Xiao-long, LI Yan. Research on the structural selection of high-speed maglev guideway[J]. Journal of Railway Engineering Society, 2021, 38(2): 68-73. [25] 任旭东, 黄靖宇, 张梓杨, 等. 时速600 km高速磁浮列车车辆-轨道耦合振动现场测试与动力特性研究[J]. 铁道车辆, 2021, 59(6): 6-11.REN Xu-dong, HUANG Jing-yu, ZHANG Zi-yang, et al. Field test and dynamic characteristics research of 600 km/h high-speed maglev vehicle-track coupled vibration[J]. Rolling Stock, 2021, 59(6): 6-11. [26] GONG J H. Structural form and dynamic characteristics of high-speed maglev separated track beam[J]. Journal of Vibration Engineering & Technologies, 2022, 10(6): 2283-2291. [27] 莫然, 滕念管. 高速磁浮组合式轨道梁的温度变形[J]. 铁道建筑, 2020, 60(11): 16-20, 32.MO Ran, TENG Nian-guan. Temperature deformation of composite track girder of high speed maglev[J]. Railway Engineering, 2020, 60(11): 16-20, 32. [28] 龚俊虎, 谢海林, 鄢巨平. 高速磁浮梁轨分离式桥梁与轨道设计和创新[J]. 铁道科学与工程学报, 2021, 18(3): 564-571.GONG Jun-hu, XIE Hai-lin, YAN Ju-ping. Design and innovation of beam-track separated bridge and track in high-speed maglev[J]. Journal of Railway Science and Engineering, 2021, 18(3): 564-571. [29] 刘林芽, 崔巍涛, 秦佳良, 等. 扣件胶垫黏弹性对铁路箱梁振动与结构噪声的影响[J]. 交通运输工程学报, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007LIU Lin-ya, CUI Wei-tao, QIN Jia-liang, et al. Effects of rail pad viscoelasticity on vibration and structure-borne noise of railway box girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007 [30] WANGK K, ZHAO C H, WU B, et al. Fully-scale test and analysis of fully dry-connected prefabricated steel-UHPC composite beam under hogging moments[J]. Engineering Structures, 2019, 197: 109380. [31] 陈海, 郭子雄, 刘阳, 等. 新型组合剪力键抗剪机理及承载力计算方法研究[J]. 工程力学, 2019, 36(3): 159-168.CHEN Hai, GUO Zi-xiong, LIU Yang, et al. Study on the shear resisting mechanism and strength for an innovative composite shear connector[J]. Engineering Mechanics, 2019, 36(3): 159-168. [32] 苏庆田, 杜霄, 李晨翔, 等. 钢与混凝土界面的基本物理参数测试[J]. 同济大学学报(自然科学版), 2016, 44(4): 499-506.SU Qing-tian, DU Xiao, LI Chen-xiang, et al. Tests of basic physical parameters of steel-concrete interface[J]. Journal of Tongji University (Natural Science), 2016, 44(4): 499-506. -
下载: