留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速磁浮新型梁轨分离式轨道结构静力性能试验

秦世强 李月闲 龚俊虎 毛羚 王秋萍

秦世强, 李月闲, 龚俊虎, 毛羚, 王秋萍. 高速磁浮新型梁轨分离式轨道结构静力性能试验[J]. 交通运输工程学报, 2025, 25(4): 135-147. doi: 10.19818/j.cnki.1671-1637.2025.04.010
引用本文: 秦世强, 李月闲, 龚俊虎, 毛羚, 王秋萍. 高速磁浮新型梁轨分离式轨道结构静力性能试验[J]. 交通运输工程学报, 2025, 25(4): 135-147. doi: 10.19818/j.cnki.1671-1637.2025.04.010
QIN Shi-qiang, LI Yue-xian, GONG Jun-hu, MAO Ling, WANG Qiu-ping. Static performance test of new separated beam-track slab structure for high-speed maglev[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 135-147. doi: 10.19818/j.cnki.1671-1637.2025.04.010
Citation: QIN Shi-qiang, LI Yue-xian, GONG Jun-hu, MAO Ling, WANG Qiu-ping. Static performance test of new separated beam-track slab structure for high-speed maglev[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 135-147. doi: 10.19818/j.cnki.1671-1637.2025.04.010

高速磁浮新型梁轨分离式轨道结构静力性能试验

doi: 10.19818/j.cnki.1671-1637.2025.04.010
基金项目: 

国家自然科学基金项目 51608408

中国铁建股份有限公司科技重大专项资助计划项目 2019-A06

详细信息
    作者简介:

    秦世强(1987-), 男,安徽肥西人,武汉理工大学副教授,工学博士,从事结构健康监测、磁浮交通桥梁与轨道结构研究

  • 中图分类号: U213.24

Static performance test of new separated beam-track slab structure for high-speed maglev

More Information
Article Text (Baidu Translation)
  • 摘要: 为解决高速磁浮梁轨一体轨道梁制造工序复杂、施工难度大及轨面线形调整困难等问题,提出一种桥梁与轨道分离式(简称“梁轨分离式”)轨道板;为了解新型梁轨分离式轨道板的静力性能,设计并开展了足尺模型试验,测量纵横梁式混凝土轨道板、钢筋和钢扣件系统在不同荷载下的位移和应力,分析了其承载能力、破坏特征和关键部位应力分布规律;基于有限元软件ABAQUS建立轨道板精细化数值模型,开展了设计参数敏感性分析,研究了钢筋直径和栓钉直径对新型轨道板静力性能的影响,对比不同钢筋直径和栓钉直径下轨道板的位移及各部件应力分布,给出了新型轨道板结构参数的合理取值。研究结果表明:在设计荷载下,轨道板处于线弹性阶段,位移峰值为0.11 mm;在3倍设计荷载下,混凝土横梁首次出现微裂缝;在5倍设计荷载下,新型轨道板仍处于带裂缝工作阶段,位移峰值为0.46 mm,小于规范容许值0.516 mm;新型梁轨分离式轨道板的承载力满足设计要求,承载力具有较高富余量;在正常运营状态下,磁浮列车荷载主要由混凝土轨道板承受,轨道板各构件受力明确,局部效应明显;适当增加钢筋直径可提高轨道板整体刚度,减小各构件的应力;增加栓钉直径对轨道板静力性能影响较低。研究结果可为新型梁轨分离式轨道板设计提供参考。

     

  • 图  1  轨道梁横截面

    Figure  1.  Section of track beam

    图  2  模型构造

    Figure  2.  Model construction

    图  3  混凝土位移测点布置(单位:mm)

    Figure  3.  Layout of concrete displacement measurement point (unit: mm)

    图  4  混凝土应变测点布置(单位:mm)

    Figure  4.  Concrete strain measurement point layout (unit: mm)

    图  5  钢扣件应变测点布置

    Figure  5.  Layout of steel fastener strain measurement point

    图  6  钢筋应变测点布置

    Figure  6.  Layout of reinforced strain measurement point

    图  7  加载示意

    Figure  7.  Schematic of loading

    图  8  两种加载方式下轨道板位移云图

    Figure  8.  Displacement contour maps of track slab under two loading conditions

    图  9  裂缝分布

    Figure  9.  Distribution of cracks

    图  10  荷载-位移曲线

    Figure  10.  Load-displacement curves

    图  11  横梁2荷载-应力曲线

    Figure  11.  Load-stress curves of beam 2

    图  12  横梁1、4钢筋荷载-应力曲线

    Figure  12.  Reinforced load-stress curves of beams 1 and 4

    图  13  有限元模型

    Figure  13.  Finite element model

    图  14  试验实测数据与有限元模型数据对比

    Figure  14.  Comparison of test measured data and finite element model data

    表  1  钢材力学性能

    Table  1.   Mechanical properties of steel

    试件 试件平均厚度/mm 屈服强度/MPa 抗拉强度/MPa 弹性模量/GPa
    滑行板 10 304 448 204
    钢扣件 20 376 525 225
    下载: 导出CSV

    表  2  不同钢筋直径下混凝土轨道板受力

    Table  2.   Stresses of concrete track slab under different reinforced diameters

    纵向受力钢筋直径/mm 16 20
    纵横梁式混凝土轨道板最大位移/mm 0.088 0.085
    混凝土横梁最大拉应力/MPa 1.073 1.012
    混凝土横梁最大压应力/MPa 4.817 4.600
    纵梁受力钢筋最大Mises应力/MPa 1.895 1.783
    横梁受力钢筋最大Mises应力/MPa 4.451 4.086
    栓钉最大Mises应力/MPa 12.850 12.270
    下载: 导出CSV

    表  3  不同栓钉直径下混凝土轨道板受力

    Table  3.   Effects of different bolt diameters on the concrete track slab

    栓钉直径/mm 16 20
    纵横梁式混凝土轨道板最大位移/mm 0.088 0.087
    混凝土横梁最大拉应力/MPa 1.073 1.046
    混凝土横梁最大压应力/MPa 4.817 4.881
    纵梁受力钢筋最大Mises应力/MPa 1.895 1.808
    横梁受力钢筋最大Mises应力/MPa 4.451 4.294
    栓钉最大Mises应力/MPa 12.850 12.556
    下载: 导出CSV
  • [1] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG Jia-yang, DENG Zi-gang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [2] 熊嘉阳, 沈志云. 中国高速铁路的崛起和今后的发展[J]. 交通运输工程学报, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002

    XIONG Jia-yang, SHEN Zhi-yun. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002
    [3] DING S, EBERHARD P, SCHNEIDER G, et al. Development of new electromagnetic suspension-based high-speed maglev vehicles in China: historical and recent progress in the field of dynamical simulation[J]. International Journal of Mechanical System Dynamics, 2023, 3(2): 97-118. doi: 10.1002/msd2.12069
    [4] LI F, SUN Y, XU J, et al. Control methods for levitation system of EMS-type maglev vehicles: an overview[J]. Energies, 2023, 16(7): 2995. doi: 10.3390/en16072995
    [5] 熊嘉阳, 沈志云, 池茂儒, 等. 高速磁悬浮列车技术综述[J]. 交通运输工程学报, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001

    XIONG Jia-yang, SHEN Zhi-yun, CHI Mao-ru, et al. Review on high-speed maglev train technology[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001
    [6] 吴祥明. 高速磁浮上海示范线的建设[J]. 同济大学学报(自然科学版), 2002, 30(7): 814-818.

    WU Xiang-ming. Construction of Shanghai maglev demonstration line[J]. Journal of Tongji University (Natural Science), 2002, 30(7): 814-818.
    [7] 余浩伟, 寇峻瑜, 李艳. 600 km/h高速磁浮在国内的适应性及工程化发展[J]. 铁道工程学报, 2020, 37(12): 16-20, 88.

    YU Hao-wei, KOU Jun-yu, LI Yan. Adaptability and engineering development of 600 km/h high-speed maglev in China[J]. Journal of Railway Engineering Society, 2020, 37(12): 16-20, 88.
    [8] 牟瀚林, 张一敏, 徐绪宝, 等. 高速磁浮铁路试验线建设方案研究[J]. 铁道工程学报, 2023, 40(8): 44-49.

    MU Han-lin, ZHANG Yi-min, XU Xu-bao, et al. Study on construction scheme of high-speed maglev railway test line[J]. Journal of Railway Engineering Society, 2023, 40(8): 44-49.
    [9] 伍卫凡. 高速磁浮与高速轮轨系统主要技术参数对比分析[J]. 铁道标准设计, 2023, 67(11): 16-23.

    WU Wei-fan. Comparison analysis of main technical parameters between the high-speed maglev and high-speed wheel rail system[J]. Railway Standard Design, 2023, 67(11): 16-23.
    [10] 翟婉明, 赵春发, 蔡成标. 磁浮列车与轮轨高速列车对线桥动力作用的比较研究[J]. 交通运输工程学报, 2001, 1(1): 7-12. https://transport.chd.edu.cn/article/id/200101002

    ZHAI Wan-ming, ZHAO Chun-fa, CAI Cheng-biao. On the comparison of dynamic effects on bridges of maglev trains with high-speed wheel/rail trains[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 7-12. https://transport.chd.edu.cn/article/id/200101002
    [11] 倪萍, 许超超, 何军, 等. 超高速磁浮车-轨道梁竖向耦合振动分析[J]. 铁道科学与工程学报, 2019, 16(6): 1361-1368.

    NI Ping, XU Chao-chao, HE Jun, et al. Vertical coupling vibration analysis of ultra high-speed maglev vehicle guideway[J]. Journal of Railway Science and Engineering, 2019, 16(6): 1361-1368.
    [12] 付善强, 梁鑫, 丁叁叁. 高速磁浮车-轨耦合系统动态机理与振动响应[J]. 同济大学学报(自然科学版), 2023, 51(3): 314-320, 384.

    FU Shan-qiang, LIANG Xin, DING San-san. Dynamic mechanism and vibration response of high-speed maglev vehicle guideway coupling system[J]. Journal of Tongji University (Natural Science), 2023, 51(3): 314-320, 384.
    [13] HUANG J Y, WU Z W, SHI J, et al. Influence of track irregularities in high-speed maglev transportation systems[J]. Smart Structures and Systems, 2018, 21(5): 571-582.
    [14] ZHANG L, HUANG J Y. Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method[J]. Engineering Structures, 2019, 180: 1-17. doi: 10.1016/j.engstruct.2018.11.031
    [15] 韩艳, 卜秀孟, 王力东, 等. 高速磁浮列车-轨道梁耦合系统轨道不平顺敏感波长研究[J]. 振动与冲击, 2024, 43(5): 1-11, 19.

    HAN Yan, BU Xiu-meng, WANG Li-dong, et al. High-speed maglev train-track beam coupled system track irregularity sensitive wavelengths[J]. Journal of Vibration and Shock, 2024, 43(5): 1-11, 19.
    [16] 陈琛, 徐俊起, 荣立军, 等. 轨道随机不平顺下磁浮车辆非线性动力学特性[J]. 交通运输工程学报, 2019, 19(4): 115-124. https://transport.chd.edu.cn/article/id/200101002

    CHEN Chen, XU Jun-qi, RONG Li-jun, et al. Nonlinear dynamics characteristics of maglev vehicle under track random irregularities[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 115-124. https://transport.chd.edu.cn/article/id/200101002
    [17] SUN Y G, HE Z Y, XU J Q, et al. Dynamic analysis and vibration control for a maglev vehicle-guideway coupling system with experimental verification[J]. Mechanical Systems and Signal Processing, 2023, 188: 109954. doi: 10.1016/j.ymssp.2022.109954
    [18] 姜卫利, 高芒芒. 轨道梁参数对磁浮车-高架桥垂向耦合动力响应的影响研究[J]. 中国铁道科学, 2004, 25(3): 71-75.

    JIANG Wei-li, GAO Mang-mang. Study of the effect of track beam parameters on vertical coupled dynamic response of maglev vehicle-viaduct[J]. China Railway Science, 2004, 25(3): 71-75.
    [19] DAI J, LIM J G Y, ANG K K. Dynamic response analysis of high-speed maglev-guideway system[J]. Journal of Vibration Engineering & Technologies, 2023, 11(6): 2647-2658.
    [20] 王淼, 宋振森, 滕念管. 高速磁浮列车-柔性轨道梁横向耦合振动[J]. 铁道科学与工程学报, 2022, 19(2): 301-309.

    WANG Miao, SONG Zhen-sen, TENG Nian-guan. Lateral coupling vibration of high-speed maglev train and flexible guideway-beam[J]. Journal of Railway Science and Engineering, 2022, 19(2): 301-309.
    [21] 文泉, 王春江, 孙向东, 等. 高速磁浮整体式预应力轨道梁温度场与变形分析[J]. 铁道科学与工程学报, 2022, 19(5): 1168-1176.

    WEN Quan, WANG Chun-jiang, SUN Xiang-dong, et al. Temperature field and deformation of high-speed maglev prestressed overall guideway beam[J]. Journal of Railway Science and Engineering, 2022, 19(5): 1168-1176.
    [22] 赵春发, 翟婉明, 蔡成标. 磁浮车辆/高架桥垂向耦合动力学研究[J]. 铁道学报, 2001, 23(5): 27-33.

    ZHAO Chun-fa, ZHAI Wan-ming, CAI Cheng-biao. Maglev vehicle/elevated-beam guideway vertical coupling dynamics[J]. Journal of the China Railway Society, 2001, 23(5): 27-33.
    [23] 梁鑫, 马卫华. 2种磁轨关系的磁浮车桥相互作用比较分析[J]. 铁道科学与工程学报, 2017, 14(4): 845-851.

    LIANG Xin, MA Wei-hua. Comparative analysis of two kinds of magnet-track relationship of maglev vehicle and guideway interaction[J]. Journal of Railway Science and Engineering, 2017, 14(4): 845-851.
    [24] 杨国静, 郑晓龙, 李艳. 高速磁浮轨道梁结构选型研究[J]. 铁道工程学报, 2021, 38(2): 68-73.

    YANG Guo-jing, ZHENG Xiao-long, LI Yan. Research on the structural selection of high-speed maglev guideway[J]. Journal of Railway Engineering Society, 2021, 38(2): 68-73.
    [25] 任旭东, 黄靖宇, 张梓杨, 等. 时速600 km高速磁浮列车车辆-轨道耦合振动现场测试与动力特性研究[J]. 铁道车辆, 2021, 59(6): 6-11.

    REN Xu-dong, HUANG Jing-yu, ZHANG Zi-yang, et al. Field test and dynamic characteristics research of 600 km/h high-speed maglev vehicle-track coupled vibration[J]. Rolling Stock, 2021, 59(6): 6-11.
    [26] GONG J H. Structural form and dynamic characteristics of high-speed maglev separated track beam[J]. Journal of Vibration Engineering & Technologies, 2022, 10(6): 2283-2291.
    [27] 莫然, 滕念管. 高速磁浮组合式轨道梁的温度变形[J]. 铁道建筑, 2020, 60(11): 16-20, 32.

    MO Ran, TENG Nian-guan. Temperature deformation of composite track girder of high speed maglev[J]. Railway Engineering, 2020, 60(11): 16-20, 32.
    [28] 龚俊虎, 谢海林, 鄢巨平. 高速磁浮梁轨分离式桥梁与轨道设计和创新[J]. 铁道科学与工程学报, 2021, 18(3): 564-571.

    GONG Jun-hu, XIE Hai-lin, YAN Ju-ping. Design and innovation of beam-track separated bridge and track in high-speed maglev[J]. Journal of Railway Science and Engineering, 2021, 18(3): 564-571.
    [29] 刘林芽, 崔巍涛, 秦佳良, 等. 扣件胶垫黏弹性对铁路箱梁振动与结构噪声的影响[J]. 交通运输工程学报, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007

    LIU Lin-ya, CUI Wei-tao, QIN Jia-liang, et al. Effects of rail pad viscoelasticity on vibration and structure-borne noise of railway box girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007
    [30] WANGK K, ZHAO C H, WU B, et al. Fully-scale test and analysis of fully dry-connected prefabricated steel-UHPC composite beam under hogging moments[J]. Engineering Structures, 2019, 197: 109380.
    [31] 陈海, 郭子雄, 刘阳, 等. 新型组合剪力键抗剪机理及承载力计算方法研究[J]. 工程力学, 2019, 36(3): 159-168.

    CHEN Hai, GUO Zi-xiong, LIU Yang, et al. Study on the shear resisting mechanism and strength for an innovative composite shear connector[J]. Engineering Mechanics, 2019, 36(3): 159-168.
    [32] 苏庆田, 杜霄, 李晨翔, 等. 钢与混凝土界面的基本物理参数测试[J]. 同济大学学报(自然科学版), 2016, 44(4): 499-506.

    SU Qing-tian, DU Xiao, LI Chen-xiang, et al. Tests of basic physical parameters of steel-concrete interface[J]. Journal of Tongji University (Natural Science), 2016, 44(4): 499-506.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  38
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-22
  • 录用日期:  2025-05-06
  • 修回日期:  2025-02-28
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回