Quantitative method and application of corrugation intervention degree based on wheel-rail vertical force
-
摘要: 为了获取钢轨波磨待治理干预程度和轮轨垂向力之间映射关系,以中国典型高铁线路和服役车辆悬挂参数建立轮轨动力学模型,精细化建构钢轨波磨区段轨面不平顺,考虑了随机短波不平顺和车轮不圆顺的影响,通过高铁线路实测波磨区段轮轨垂向力验证轮轨动力学模型数值计算的准确性;仿真研究300 km·h-1时4组波长算例下钢轨波磨激励的轮轨垂向力及其时频域分布特性,分析了不同波长工况下轮轨垂向力随谷深值的变化趋势,揭示了不考虑波磨激励特性时轮轨垂向力评价指标的不适应性;拟合了波长在40~300 mm内波磨在打磨整治预限值和重度损伤阈值工况下轮轨垂向力与波长之间映射关系,分析了钢轨固有振动模态及轮轨接触行为等因素对上述映射特性的影响;对轮轨垂向力数据进行波长加权,获取波磨干预值指标用于量化波磨严重程度,提出实测轮轨垂向力获取干预值的计算流程,最终实现了面向实际线路上40~300 mm波长范围的波磨识别和干预程度评估算法。研究结果表明:波磨干预值在高铁线路58组波磨样本实测谷深值和干预值对比中,波磨状态评价的准确度为91.4%;波磨干预值综合考虑了波磨波长激励特性和轮轨垂向力学行为,在波磨识别和严重程度评价方面具有良好应用效果。研究成果可为300 km·h-1高铁线路波磨激励特性、状态评价和打磨治理决策提供科学支撑。Abstract: To obtain the mapping relationship between the intervention degree to be ground for rail corrugation and the wheel-rail vertical force, a wheel-rail dynamics model was built based on the suspension parameters of typical high-speed railways and service vehicles in China. The rail surface irregularity of the corrugation section was finely constructed, with the effects of random short-wave irregularities and wheel out-of-roundness considered. The numerical calculation accuracy of the wheel-rail dynamics model was verified by measured wheel-rail vertical force in corrugation sections of high-speed railways. The wheel-rail vertical forces excited by rail corrugation under four wavelength conditions at 300 km·h-1 were simulated. The time-frequency domain distribution characteristics were analyzed. The variation of wheel-rail vertical force with valley depth under different wavelengths was analyzed. The inadaptability of the wheel-rail vertical force evaluation index was revealed when the excitation characteristics of corrugation were not considered. The mapping relationships between wheel-rail vertical force and corrugation with wavelength within 40-300 mm were fitted under the conditions of grinding management threshold and severe damage threshold. The influences of rail natural vibration modes and wheel-rail contact behavior on the mapping characteristics were analyzed. A corrugation intervention index was introduced by wavelength weighting of the wheel-rail vertical force to quantify the corrugation severity. A calculation process for deriving the intervention index from measured wheel-rail vertical force was proposed. An algorithm was developed to identify corrugation and evaluate its intervention degree on actual railways in the 40-300 mm wavelength range. Analysis results show that, with comparison of 58 measured corrugation samples, the accuracy of corrugation evaluation based on the intervention index reaches 91.4%. The intervention index comprehensively considers the excitation characteristics of the corrugation wavelength and the mechanical behavior of the wheel-rail vertical force. It has good application performance in corrugation identification and severity evaluation. These results provide scientific support for understanding corrugation excitation characteristics, evaluating corrugation states, and making-decisions for rail grinding on actual high-speed railways.
-
表 1 轮轨动力学模型主要参数列表
Table 1. Main parameters of wheel-rail dynamics model
参数名称 量值 参数名称 量值 轮轨材料 泊松比 0.3 一系悬挂弹簧 垂向刚度/(kN·mm-1) 1.04 密度/(mg·mm-3) 7.8 垂向阻尼/(N·s·mm-1) 40.0 弹性模量/GPa 210.0 横向刚度/(kN·mm-1) 0.98 切线模量/GPa 21.0 扣件等效弹簧 刚度/(kN·mm-1) 20.0 屈服强度/MPa 542.0 阻尼/(N·s·mm-1) 50.0 轨道板 泊松比 0.25 混凝土道床材料 泊松比 0.16 密度/(mg·mm-3) 2.4 密度/(mg·mm-3) 2.4 弹性模量/GPa 34.5 弹性模量/GPa 32.5 CA砂浆材料 泊松比 0.2 单位长度钢轨质量/(g·mm-1) 60.64 密度/(mg·mm-3) 1.6 质量块(含等效车体)/t 5.9 弹性模量/GPa 8.0 轮轨摩擦因数 0.30 静轮重/kN 67.0 轨枕间距/mm 648.0 轮对滚动圆半径/mm 430 轮对空心轴半径/mm 30 表 2 实测轮轨垂向力与仿真结果统计对比
Table 2. Statistical comparisons of measured and simulated wheel-rail vertical forces
项目 最大值/kN 最小值/kN 平均值/kN 有效值/kN 主频/Hz 仿真结果 104.306 29.642 71.227 28.685 623.7 实测数据 103.978 29.271 68.793 29.705 627.1 相对误差/% 0.31 1.25 3.42 3.56 0.55 表 3 四种波长工况下部分P95指标统计结果
Table 3. Statistical results of P95 under 4 wavelength conditions
d/mm 不同波长(mm)下的P95指标/kN 60 120 180 240 0.04 81.93 76.48 72.90 72.12 0.08 95.93 85.62 77.88 75.98 0.12 108.35 94.97 82.90 79.71 0.16 115.63 104.60 87.96 83.47 0.20 119.71 114.09 93.07 87.13 表 4 曲线Ⅰ和曲线Ⅱ中P95取值
Table 4. P95 values in curve Ⅰ and curve Ⅱ
kN 波长/mm 曲线Ⅰ 曲线Ⅱ 波长/mm 曲线Ⅰ 曲线Ⅱ 40 87.01 98.86 172 79.06 95.85 44 91.73 106.60 176 78.40 93.81 48 94.37 111.25 180 77.88 93.07 52 95.80 112.87 184 78.15 94.32 56 96.74 117.99 188 78.22 94.39 60 95.93 119.71 192 77.29 92.04 64 95.38 121.80 196 76.85 90.69 68 95.19 123.99 200 76.55 90.31 72 97.83 127.21 204 76.44 89.79 76 99.74 127.94 208 76.28 89.33 80 100.40 128.74 212 76.06 88.89 84 101.04 130.42 216 76.50 88.84 88 98.85 131.64 220 76.81 89.13 92 96.83 127.87 224 76.36 88.26 96 94.02 128.19 228 76.05 88.05 100 92.37 126.00 232 76.13 87.69 104 90.61 123.97 236 76.09 87.53 108 88.42 120.84 240 75.98 87.13 112 87.65 119.36 244 75.90 87.04 116 86.53 116.26 248 75.80 86.84 120 85.62 114.09 252 75.68 86.96 124 84.91 112.89 256 75.55 86.46 128 83.88 110.34 260 75.46 86.34 132 83.32 109.62 264 75.36 86.21 136 81.78 106.22 268 75.24 86.04 140 82.12 106.02 272 75.09 85.82 144 81.91 105.14 276 74.87 85.55 148 81.03 101.40 280 74.63 85.03 152 80.84 102.60 284 74.39 84.60 156 80.00 101.11 288 74.32 84.12 160 78.65 96.63 292 74.37 83.61 164 78.54 96.29 296 74.94 83.75 168 78.64 96.67 300 74.23 83.12 -
[1] GRASSIE S L. The corrugation of railway rails: 1. Introduction and mitigation measures[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237(5): 588-596. doi: 10.1177/09544097221125626 [2] 朱海燕, 袁遥, 肖乾, 等. 钢轨波磨研究进展[J]. 交通运输工程学报, 2021, 21(3): 110-133. doi: 10.19818/j.cnki.1671-1637.2021.03.006ZHU Hai-yan, YUAN Yao, XIAO Qian, et al. Research progress on rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 110-133. doi: 10.19818/j.cnki.1671-1637.2021.03.006 [3] LATHE A S, GAUTAM A. Estimating vertical profile irregularities from vehicle dynamics measurements[J]. IEEE Sensors Journal, 2020, 20(1): 377-385. doi: 10.1109/JSEN.2019.2942317 [4] GAZAFRUDI S M M, YOUNESIAN D, TORABI M. A high accuracy and high-speed imaging and measurement system for rail corrugation inspection[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 8894-8903. doi: 10.1109/TIE.2020.3013748 [5] GUERRIERI M, PARLA G, CELAURO C. Digital image analysis technique for measuring railway track defects and ballast gradation[J]. Measurement, 2018, 113: 137-147. doi: 10.1016/j.measurement.2017.08.040 [6] 宋立忠, 冯青松, 孙坤, 等. 城市轨道交通高架钢轨波磨地段振动噪声试验[J]. 交通运输工程学报, 2021, 21(3): 159-168. doi: 10.19818/j.cnki.1671-1637.2021.03.009SONG Li-zhong, FENG Qing-song, SUN Kun, et al. Test on vibration noise of rail corrugation section on urban rail transit viaduct[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 159-168. doi: 10.19818/j.cnki.1671-1637.2021.03.009 [7] 周月, 文永蓬, 王向阳, 等. 考虑滚动噪声的地铁波磨打磨限值评估方法[J]. 振动. 测试与诊断, 2024, 44(1): 100-106, 200.ZHOU Yue, WEN Yong-peng, WANG Xiang-yang, et al. Evaluation method of the grinding limit for metro rail corrugation considering the rolling noise[J]. Journal of Vibration, Measurement & Diagnosis, 2024, 44(1): 100-106, 200. [8] 张大鑫, 李莉, 张云飞. 基于地铁车内噪声控制的钢轨打磨限值研究[J]. 城市轨道交通研究, 2023, 26(3): 160-165.ZHANG Da-xin, LI Li, ZHANG Yun-fei. Research on rail grinding limit based on metro vehicle interior noise control[J]. Urban Mass Transit, 2023, 26(3): 160-165. [9] WANG Q S, CHEN S Q, ZENG J, et al. A deep learning fault diagnosis method for metro on-board detection on rail corrugation[J]. Engineering Failure Analysis, 2024, 164: 108662. doi: 10.1016/j.engfailanal.2024.108662 [10] SALVADOR P, NARANJO V, INSA R, et al. Axlebox accelerations: their acquisition and time-frequency characterisation for railway track monitoring purposes[J]. Measurement, 2016, 82: 301-312. doi: 10.1016/j.measurement.2016.01.012 [11] WESTON P, ROBERTS C, YEO G, et al. Perspectives on railway track geometry condition monitoring from in-service railway vehicles[J]. Vehicle System Dynamics, 2015, 53(7): 1063-1091. doi: 10.1080/00423114.2015.1034730 [12] 牛留斌, 祖宏林, 徐晓迪, 等. 基于轴箱垂向振动加速度的波磨谷深值估算方法及应用[J]. 中国铁道科学, 2023, 44(1): 25-38.NIU Liu-bin, ZU Hong-lin, XU Xiao-di, et al. Estimation method and application of depth of rail corrugation based on vertical vibration acceleration of axle box[J]. China Railway Science, 2023, 44(1): 25-38. [13] CARRIGAN T D, TALBOT J P. A new method to derive rail roughness from axle-box vibration accounting for track stiffness variations and wheel-to-wheel coupling[J]. Mechanical Systems and Signal Processing, 2023, 192: 110232. doi: 10.1016/j.ymssp.2023.110232 [14] 和振兴, 刘旭麒, 王玉魁, 等. 高速铁路钢轨波磨地段轴箱振动加速度时频特征分析[J]. 铁道科学与工程学报, 2024, 21(4): 1275-1285.HE Zhen-xing, LIU Xu-qi, WANG Yu-kui, et al. Time-frequency characteristics analysis of axle-box acceleration in high-speed railway rail corrugation section[J]. Journal of Railway Science and Engineering, 2024, 21(4): 1275-1285. [15] BAGHERI V R, YOUNESIAN D, TEHRANI P H. A new methodology for the estimation of wheel-rail contact forces at a high-frequency range[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(10): 2353-2370. doi: 10.1177/0954409718771746 [16] MAGLIO M, VERNERSSON T, NIELSEN J C O, et al. Railway wheel tread damage and axle bending stress-Instrumented wheelset measurements and numerical simulations[J]. International Journal of Rail Transportation, 2022, 10(3): 275-297. doi: 10.1080/23248378.2021.1932621 [17] GULLERS P, DREIK P, NIELSEN J C O, et al. Track condition analyser: identification of rail rolling surface defects, likely to generate fatigue damage in wheels, using instrumented wheelset measurements[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225(1): 1-13. doi: 10.1243/09544097JRRT398 [18] NIELSEN J. Rail roughness level assessment based on high- frequency wheel-rail contact force measurements[C]//Springer. Noise and Vibration Mitigation for Rail Transportation Systems. Berlin: Springer, 2008: 355-362. [19] BERGGREN E G, LI M X D, SPÄNNAR J. A new approach to the analysis and presentation of vertical track geometry quality and rail roughness[J]. Wear, 2008, 265(9/10): 1488-1496. [20] 李谷, 张志超, 祖宏林, 等. 高速铁路典型轨道病害下轮轨力响应特性试验研究[J]. 中国铁道科学, 2019, 40(6): 30-36.LI Gu, ZHANG Zhi-chao, ZU Hong-lin, et al. Experimental study on wheel-rail force response characteristics under typical track defects of high speed railway[J]. China Railway Science, 2019, 40(6): 30-36. [21] 牛留斌, 李谷, 刘金朝, 等. 轮轨力在轨道短波不平顺检测中的应用[J]. 铁道建筑, 2019, 59(8): 133-139.NIU Liu-bin, LI Gu, LIU Jin-zhao, et al. Application of the wheel-rail force in track short wave irregularity detection[J]. Railway Engineering, 2019, 59(8): 133-139. [22] BAEZA L, GINER-NAVARRO J, KNUTH C, et al. Comprehensive model of a rotating flexible wheelset for high-frequency railway dynamics[J]. Mechanical Systems and Signal Processing, 2023, 200: 110592. [23] MA C Z, GAO L, XIN T, et al. The dynamic resonance under multiple flexible wheelset-rail interactions and its influence on rail corrugation for high-speed railway[J]. Journal of Sound and Vibration, 2021, 498(1): 115968. [24] RESAPU R R, PERUMAHANTHI L R. Numerical study of bilinear isotropic and kinematic elastic-plastic response under cyclic loading[J]. Materials Today: Proceedings, 2021, 39(4): 1647-1654. [25] KHAN S A, LUNDBERG J, STENSTRÖM C. The effect of third bodies on wear and friction at the wheel-rail interface[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(6): 662-671. [26] SICHANI M S, BEZIN Y. Differential wear modelling-effect of weld-induced material inhomogeneity on rail surface quality[J]. Wear, 2018, 406/407: 43-52. [27] CHEN Z, CHENG G, LIU Q, et al. Study on the frequency and temperature characteristics of dynamic stiffness of fastenings in high-speed railway[J]. Journal of Vibration Measurement and Diagnosis, 2022, 42(3): 495-502. [28] ZENG Z P, WANG J D, SHEN S W, et al. Experimental study on evolution of mechanical properties of CRTS Ⅲ ballastless slab track under fatigue load[J]. Construction and Building Materials, 2019, 210: 639-649. [29] MASJEDI M, KHONSARI M M. Theoretical and experimental investigation of traction coefficient in line-contact EHL of rough surfaces[J]. Tribology International, 2014, 70: 179-189. [30] Abaqus Inc. Abaqus theory user's manual[M]. Providence: Abaqus Inc, 2016: 129-162. [31] BELYTSCHKO T, LIU W, MORAN B. Nonlinear finite elements for continua and structures[M]. New Jersey: John Wiley & Sons Inc, 2014: 312-354. [32] KLAUS K, SEBASTIAN S. Rail vehicle dynamics[M]. Cham: Springer International Publishing, 2017: 17-32. [33] SATO Y. Study on high-frequency vibrations in track operation with high-speed trains[J]. Quarterly Reports of RTRI, 1977, 18 (3): 109-114. -
下载: