Causes and measures of low-frequency swaying of linear induction motor metro vehicles
-
摘要: 针对国内一种直线电机地铁车辆线路运营10多年后出现的车体低频晃动问题,采用现场试验和数值仿真相结合方法开展了晃车成因及控制措施研究;现场测试了磨耗轮轨廓形状态、服役轨道的几何不平顺、车辆动力学性能和振动特征,分析了轮轨匹配等效锥度、轨道几何不平顺与晃车特征的关联关系;结合车辆动力学系统仿真,分析了车辆异常晃动机理及关键影响因素;从轮轨等效锥度控制、悬挂参数优化和轨道几何不平顺管控等角度提出了晃车防治措施,并进行了线路试验验证。分析结果表明:不同里程服役车辆在直线和大于1 km半径曲线轨道上以70~90 km·h-1高速运行时车体均出现约2 Hz低频横向晃动,晃动车辆横向平稳性指标最大超过4.0,实际轮轨匹配等效锥度为0.1~0.2,该晃动现象与由轮轨低锥度引发的车体蛇行失稳不同;该车辆低频晃动是转向架蛇行频率、线路波长11~13 mm的周期性轨道几何不平顺激扰频率与车体上心滚摆频率三者接近导致的;使用小于0.05的低锥度轮轨廓形降低转向架蛇行频率或控制轨道波长11~13 mm的几何不平顺消除2 Hz左右激扰源可抑制直线电机车辆异常晃动现象的发生;一系定位刚度从10 MN·m-1增加到18 MN·m-1,空簧水平刚度由0.183 MN·m-1降低为0.120 MN·m-1,二系横向阻尼由40 kN·s·m-1改为20 kN·s·m-1及采取0.1~0.2的轮轨摩擦因数可一定程度改善晃车现象。研究成果为直线电机地铁车辆低频晃动问题的解决提供了理论指导,具有重要工程应用价值。Abstract: After more than 10 years of operation, a metro line in China experienced a low-frequency swaying of vehicles with linear induction motors (LIMs). Field tests and numerical simulations were carried out to investigate the cause and control measures of the vehicle swaying. Experimental studies were carried out to assess worn wheel-rail profiles, track irregularity, vehicle dynamics performance, and vibration characteristics. The relationships between wheel-rail contact equivalent conicity, track irregularity, and swaying features were analyzed. Vehicle dynamics simulation was conducted to uncover the mechanism of abnormal swaying and its key influencing factors. Effective measures against the swaying were proposed from three aspects: controlling the wheel-rail equivalent conicities, optimizing suspension parameters, and managing track irregularities, which were validated by field tests. Analysis results show that when vehicles with varying mileage operate at 70-90 km·h-1 on straight tracks and curves with radii over 1 km experience lateral swaying at a low frequency of about 2 Hz. The maximum lateral ride index exceeds 4.0 during the swaying. The measured equivalent conicities of the wheel-rail contact are about 0.1-0.2. This swaying differs from the vehicle hunting instability caused by the low conicity of wheel-rail contact. The cause lies in the closeness of three frequencies: bogie hunting frequency, the natural frequency of the vehicle carbody upper swaying, and excitation frequency of periodic track irregularities with wavelengths of 11-13 mm. Suppressing swaying can be achieved by either reducing the bogie hunting frequency through the use of low-conicity wheel-rail profiles (less than 0.05) or eliminating 11-13 mm irregularities to remove the 2 Hz excitation source. By increasing the longitudinal stiffness of the primary suspension from 10 MN·m-1 to 18 MN·m-1, reducing the lateral stiffness of air spring from 0.183 MN·m-1 to 0.120 MN·m-1, lowering the lateral damping of the secondary suspension from 40 kN·s·m-1 to 20 kN·s·m-1, and employing a wheel-rail friction coefficients of 0.1-0.2, the swaying can be reduced to a certain extent. The results provide theoretical guidance for mitigating low-frequency swaying in linear induction motor metro vehicles, offering important engineering application value.
-
表 1 测试线路段钢轨轨顶摩擦因数
Table 1. Top-of-rail friction coefficients on test sections of track
测试位置/m 隧道路段钢轨 高架路段钢轨 测试位置/m 隧道路段钢轨 高架路段钢轨 0~20 0.47 0.44 100~120 0.46 0.38 20~40 0.44 0.42 120~140 0.54 0.43 40~60 0.53 0.41 140~160 0.56 0.37 60~80 0.51 0.40 160~180 0.52 0.38 80~100 0.53 0.39 180~200 0.59 0.40 表 2 车辆参数
Table 2. Vehicle parameters
参数 数值 参数 数值 转向架中心距/m 11.14 二系横向、纵向刚度/(MN·m-1) 0.162 5 轴距/m 2 二系垂向刚度/(MN·m-1) 0.4 车轮滚动圆横向跨距/mm 1 493 车体侧滚转动惯量/(kg·m2) 21 312 车轮滚动圆直径/mm 0.73 车体点头转动惯量/(kg·m2) 399 416 车辆地板高度/m 1 车体摇头转动惯量/(kg·m2) 402 890 实际最高运营速度/(km·h-1) 85 车体重心距轨面高/m 1.4 轮对质量/t 1.007 直线电机质量/kg 1 480.5 构架质量/t 1.900 直线电机侧滚转动惯量/(kg·m2) 33 一系横向、纵向刚度/(MN·m-1) 5 直线电机点头转动惯量/(kg·m2) 646 一系垂向刚度/(MN·m-1) 1.06 直线电机摇头转动惯量/(kg·m2) 647 表 3 不同措施下的改进效果
Table 3. Improvement effects under different measures
措施 横向平稳性指标(实施措施前) 横向平稳性指标(实施措施后) 改进效果 最大值 最大平均值 最大值 最大平均值 最大值(百分比) 最大平均值(百分比) 降低轮轨匹配锥度 4.70 4.00 2.83 2.40 1.87(39.8%) 1.60(40.0%) 减小周期轨向几何不平顺激励 4.70 4.00 2.76 2.71 1.94(41.3%) 1.29(32.3%) 悬挂参数优化 4.06 3.94 3.38 2.90 0.68(16.7%) 1.04(26.4%) -
[1] 张斌, 关庆华, 李伟, 等. 轨道不平顺与轮轨匹配对地铁车辆晃动的影响[J]. 浙江大学学报(工学版), 2022, 56(9): 1772-1779.ZHANG Bin, GUAN Qing-hua, LI Wei, et al. Influence of track irregularity and wheel-rail profile compatibility on metro vehicle sway[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(9): 1772-1779. [2] SHI Y X, DAI H Y, WANG Q S, et al. Research on low-frequency swaying mechanism of metro vehicles based on wheel-rail relationship[J]. Shock and Vibration, 2020, 2020(1): 8878020. [3] KNOTHE K, BÖHM F. History of stability of railway and road vehicles[J]. Vehicle System Dynamics, 1999, 31(5/6): 283-323. [4] 池茂儒, 张卫华, 曾京, 等. 蛇行运动对铁道车辆平稳性的影响[J]. 振动工程学报, 2008, 21(6): 639-643.CHI Mao-ru, ZHANG Wei-hua, ZENG Jing, et al. Influence of hunting motion on ride quality of railway vehicle[J]. Journal of Vibration Engineering, 2008, 21(6): 639-643. [5] STICHEL S. On freight wagon dynamics and track deterioration[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1999, 213(4): 243-254. doi: 10.1243/0954409991531182 [6] STICHEL S. How to improve the running behaviour of freight wagons with UIC-link suspension[J]. Vehicle System Dynamics, 1999, 33(S): 394-405. [7] SCHEFFEL H. The influence of the suspension on the hunting stability of railways[J]. Rail International, 1979, 10: 662-696. [8] MATSUDAIRA T. Hunting problem of high-speed railway vehicles with special reference to bogie design for the new tokaido line[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1965, 180(6): 58-66. [9] ANDERSON R J, FORTIN C. Low conicity instabilities in forced-steering railway vehicles[J]. Vehicle System Dynamics, 1988, 17: 17-28. doi: 10.1080/00423118808969237 [10] LI Y X, CHI M R, GUO Z T, et al. An abnormal carbody swaying of intercity EMU train caused by low wheel-rail equivalent conicity and damping force unloading of yaw damper[J]. Railway Engineering Science, 2023, 31(3): 252-268. doi: 10.1007/s40534-022-00295-w [11] 冯永华, 张振先, 梁海啸, 等. 动车组低频晃车原因分析及应对措施[J]. 铁道机车车辆, 2021, 41(5): 11-16.FENG Yong-hua, ZHANG Zhen-xian, LIANG Hai-xiao, et al. Research on the causes and improvement measures for low-frequency shaking of EMU[J]. Railway Locomotive and Car, 2021, 41(5): 11-16. [12] SUN J F, CHI M R, JIN X S, et al. Experimental and numerical study on carbody hunting of electric locomotive induced by low wheel-rail contact conicity[J]. Vehicle System Dynamics, 2021, 59(2): 203-223. doi: 10.1080/00423114.2019.1674344 [13] LI W, GUAN Q H, CHI M R, et al. An investigation into the influence of wheel-rail contact relationships on the carbody hunting stability of an electric locomotive[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(10): 1198-1209. doi: 10.1177/09544097221084412 [14] NÖ M, HEDRICK J K. High speed stability for rail vehicles considering varying conicity and creep coefficients[J]. Vehicle System Dynamics, 1984, 13(6): 299-313. doi: 10.1080/00423118408968780 [15] POLACH O. Characteristic parameters of nonlinear wheel/rail contact geometry[J]. Vehicle System Dynamics, 2010, 48(S1): 19-36. [16] 于海然, 张立民, 张艳斌, 等. 高速列车车体局部结构减振阻尼措施试验研究[J]. 大连交通大学学报, 2017, 38(2): 15-20.YU Hai-ran, ZHANG Li-min, ZHANG Yan-bin, et al. Experiment investigation and study of vibration damping measures on local structure of high-speed train bodies[J]. Journal of Dalian Jiaotong University, 2017, 38(2): 15-20. [17] WU Y, ZENG J, QU S, et al. Low-frequency carbody sway modelling based on low wheel-rail contact conicity analysis[J]. Shock and Vibration, 2020, 2020(1): 6671049. [18] 龚继军, 侯博, 王军平, 等. 钢轨打磨对动车组运行性能的影响[J]. 铁道建筑, 2019, 59(5): 145-149.GONG Ji-jun, HOU Bo, WANG Jun-ping, et al. Influence of rail profile grinding on running performance of EMU[J]. Railway Engineering, 2019, 59(5): 145-149. [19] 池茂儒, 蔡吴斌, 梁树林, 等. 高速铁路钢轨打磨偏差对车辆动力学性能的影响[J]. 中国机械工程, 2019, 30(3): 261-265, 283.CHI Mao-ru, CAI Wu-bin, LIANG Shu-lin, et al. Influences of rail grinding deviations on vehicle dynamics performances of high speed railways[J]. China Mechanical Engineering, 2019, 30(3): 261-265, 283. [20] 何旭升, 吴会超, 高峰. 高速动车组晃车机理试验研究[J]. 大连交通大学学报, 2017, 38(1): 21-25.HE Xu-sheng, WU Hui-chao, GAO Feng. Test study on carbody swing of high-speed EMUs[J]. Journal of Dalian Jiaotong University, 2017, 38(1): 21-25. [21] 吴会超, 霍文彪, 卢权, 等. 不同抗蛇行减振器对动车组蛇行失稳的影响研究[J]. 机车电传动, 2017(5): 30-34.WU Hui-chao, HUO Wen-biao, LU Quan, et al. Influence study of different anti-yaw dampers on EMUs hunting instability[J]. Electric Drive for Locomotives, 2017(5): 30-34. [22] HUANG C H, ZENG J, LIANG S L. Carbody hunting investigation of a high speed passenger car[J]. Journal of Mechanical Science and Technology, 2013, 27(8): 2283-2292. doi: 10.1007/s12206-013-0611-z [23] ALONSO A, GIMÉNEZ J G, GOMEZ E. Yaw damper modelling and its influence on railway dynamic stability[J]. Vehicle System Dynamics, 2011, 49(9): 1367-1387. doi: 10.1080/00423114.2010.515031 [24] PRACNY V, MEYWERK M, LION A. Hybrid neural network model for history-dependent automotive shock absorbers[J]. Vehicle System Dynamics, 2007, 45(1): 1-14. doi: 10.1080/00423110600810499 [25] HUANG C H, ZENG J. Suppression of the flexible carbody resonance due to bogie instability by using a DVA suspended on the bogie frame[J]. Vehicle System Dynamics, 2022, 60(9): 3051-3070. doi: 10.1080/00423114.2021.1930071 [26] CHOI I I, UM J H, LEE J S, et al. The influence of track irregularities on the running behavior of high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227(1): 94-102. doi: 10.1177/0954409712455146 [27] SKERMAN D, COLE C, SPIRYAGIN M. The effect of the wavelength of lateral track geometry irregularities on the response measurable by an instrumented freight wagon[J]. Vehicle System Dynamics, 2024, 62(3): 533-555. doi: 10.1080/00423114.2023.2183871 [28] 叶一鸣, 贡照华. 机车晃车原因分析及其预防[J]. 铁道学报, 2003, 25(1): 113-117.YE Yi-ming, GONG Zhao-hua. Analysis of the cause and prevention for the swing of locomotive[J]. Journal of the China Railway Society, 2003, 25(1): 113-117. [29] WANG J C, LING L, DING X, et al. The influence of aerodynamic loads on carbody low-frequency hunting of high-speed trains[J]. International Journal of Structural Stability and Dynamics, 2022, 22(13): 2250145. doi: 10.1142/S0219455422501450 [30] DING X, CHANG C, LING L, et al. Mechanism analysis of low-frequency swaying motion of high-speed trains induced by aerodynamic loads[J]. Journal of Vibration and Control, 2024, 30(13/14): 3141-3153. [31] JIANG P B, LING L, ZHAO J Y, et al. Experimental and numerical study on bogie hunting motion of metro vehicles induced by wheel concave wear[J]. Vehicle System Dynamics, 2025, 63(5): 920-943. doi: 10.1080/00423114.2024.2362942 [32] 陈迪来, 沈钢, 宗聪聪. 基于模态追踪的地铁车辆低频横向晃动分析[J]. 铁道学报, 2019, 41(10): 47-52.CHEN Di-lai, SHEN Gang, ZONG Cong-cong. Analysis of low-frequency lateral swaying of metro vehicle based on mode tracing[J]. Journal of the China Railway Society, 2019, 41(10): 47-52. [33] 李然, 罗仁. 低轮轨摩擦因数对高速列车横向运动稳定性影响[J]. 机械工程与自动化, 2017(1): 20-21, 24.LI Ran, LUO Ren. Influence of low wheel/rail friction coefficient on lateral movement stability of high-speed train[J]. Mechanical Engineering & Automation, 2017(1): 20-21, 24. [34] 顾戌华, 夏禾, 郭薇薇. 直线电机列车-桥梁系统动力分析[J]. 振动工程学报, 2008, 21(6): 608-613.GU Xu-hua, XIA He, GUO Wei-wei. Dynamic analysis of LIM train-bridge system[J]. Journal of Vibration Engineering, 2008, 21(6): 608-613. [35] LI W, QI Y J, WEN Z F, et al. Coupling effect of track irregularity and wheel-rail contact conicity on carbody swaying of a metro vehicle: an experimental investigation[J]. Vehicle System Dynamics, 2025, 63(5): 944-963. doi: 10.1080/00423114.2024.2362947 -
下载: