留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直线电机地铁车辆低频晃动成因及控制措施

李伟 刘增华 胡怡东 陈希隽 周亚波 温泽峰 李肖肖 陈健

李伟, 刘增华, 胡怡东, 陈希隽, 周亚波, 温泽峰, 李肖肖, 陈健. 直线电机地铁车辆低频晃动成因及控制措施[J]. 交通运输工程学报, 2025, 25(4): 190-204. doi: 10.19818/j.cnki.1671-1637.2025.04.014
引用本文: 李伟, 刘增华, 胡怡东, 陈希隽, 周亚波, 温泽峰, 李肖肖, 陈健. 直线电机地铁车辆低频晃动成因及控制措施[J]. 交通运输工程学报, 2025, 25(4): 190-204. doi: 10.19818/j.cnki.1671-1637.2025.04.014
LI Wei, LIU Zeng-hua, HU Yi-dong, CHEN Xi-jun, ZHOU Ya-bo, WEN Ze-feng, LI Xiao-xiao, CHEN Jian. Causes and measures of low-frequency swaying of linear induction motor metro vehicles[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 190-204. doi: 10.19818/j.cnki.1671-1637.2025.04.014
Citation: LI Wei, LIU Zeng-hua, HU Yi-dong, CHEN Xi-jun, ZHOU Ya-bo, WEN Ze-feng, LI Xiao-xiao, CHEN Jian. Causes and measures of low-frequency swaying of linear induction motor metro vehicles[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 190-204. doi: 10.19818/j.cnki.1671-1637.2025.04.014

直线电机地铁车辆低频晃动成因及控制措施

doi: 10.19818/j.cnki.1671-1637.2025.04.014
基金项目: 

国家自然科学基金项目 52002343

四川省科技计划项目 2024NSFSC0160

四川省科技计划项目 2023YFQ0091

详细信息
    作者简介:

    李伟(1985-),男,湖北监利人,西南交通大学副研究员,工学博士,从事轮轨动力学与伤损研究

  • 中图分类号: U270.11

Causes and measures of low-frequency swaying of linear induction motor metro vehicles

Funds: 

National Natural Science Foundation of China 52002343

Sichuan Science and Technology Program of China 2024NSFSC0160

Sichuan Science and Technology Program of China 2023YFQ0091

More Information
    Corresponding author: LI Wei (1985-), male, associate professor, PhD, 1022liwei@163.com
Article Text (Baidu Translation)
  • 摘要: 针对国内一种直线电机地铁车辆线路运营10多年后出现的车体低频晃动问题,采用现场试验和数值仿真相结合方法开展了晃车成因及控制措施研究;现场测试了磨耗轮轨廓形状态、服役轨道的几何不平顺、车辆动力学性能和振动特征,分析了轮轨匹配等效锥度、轨道几何不平顺与晃车特征的关联关系;结合车辆动力学系统仿真,分析了车辆异常晃动机理及关键影响因素;从轮轨等效锥度控制、悬挂参数优化和轨道几何不平顺管控等角度提出了晃车防治措施,并进行了线路试验验证。分析结果表明:不同里程服役车辆在直线和大于1 km半径曲线轨道上以70~90 km·h-1高速运行时车体均出现约2 Hz低频横向晃动,晃动车辆横向平稳性指标最大超过4.0,实际轮轨匹配等效锥度为0.1~0.2,该晃动现象与由轮轨低锥度引发的车体蛇行失稳不同;该车辆低频晃动是转向架蛇行频率、线路波长11~13 mm的周期性轨道几何不平顺激扰频率与车体上心滚摆频率三者接近导致的;使用小于0.05的低锥度轮轨廓形降低转向架蛇行频率或控制轨道波长11~13 mm的几何不平顺消除2 Hz左右激扰源可抑制直线电机车辆异常晃动现象的发生;一系定位刚度从10 MN·m-1增加到18 MN·m-1,空簧水平刚度由0.183 MN·m-1降低为0.120 MN·m-1,二系横向阻尼由40 kN·s·m-1改为20 kN·s·m-1及采取0.1~0.2的轮轨摩擦因数可一定程度改善晃车现象。研究成果为直线电机地铁车辆低频晃动问题的解决提供了理论指导,具有重要工程应用价值。

     

  • 图  1  试验车辆加速度计安装

    Figure  1.  Installation of accelerometer on test vehicle

    图  2  车辆部件横向振动加速度

    Figure  2.  Lateral vibration accelerations of vehicle components

    图  3  车体地板加速度和平稳性指标

    Figure  3.  Accelerations of carbody floor and ride index

    图  4  车体地板加速度时频谱

    Figure  4.  Time-frequency spectra of carbody floor accelerations

    图  5  不同轮轨廓形匹配等效锥度

    Figure  5.  Equivalent conicity between various wheel and rail profiles

    图  6  直线段轨道几何不平顺

    Figure  6.  Track irregularities in a straight track section

    图  7  轨面11 m波长交替性磨耗光带

    Figure  7.  Periodic wear band on the railhead with wavelength of 11 m

    图  8  摩擦因数测试现场照片

    Figure  8.  Field test photo of friction coefficients

    图  9  车辆系统动力学模型

    Figure  9.  Dynamics model of vehicle system

    图  10  二系横向减振器阻尼非线性特性

    Figure  10.  Nonlinearity characteristics of secondary lateral damper for the suspension

    图  11  横向止挡力-位移关系曲线

    Figure  11.  Relationship curve of lateral stopper force-displacement

    图  12  车辆振动响应仿真结果

    Figure  12.  Simulation results of vehicle vibration response

    图  13  频率随车速变化

    Figure  13.  Variation of frequencies at different vehicle speeds

    图  14  车轮廓形对横向平稳性指标影响

    Figure  14.  Effect of wheel tread profiles on lateral ride index

    图  15  不同轨道谱激扰下横向平稳性指标

    Figure  15.  Lateral ride index for different track irregularities

    图  16  不同悬挂系数下平稳性指标

    Figure  16.  Ride index for different values of suspension parameters

    图  17  摩擦因数对横向平稳性指标影响

    Figure  17.  Effect of friction coefficients on lateral ride index (

    图  18  线路B轨道几何不平顺及等效锥度

    Figure  18.  Track irregularities and equivalent conicities on a metro line B

    表  1  测试线路段钢轨轨顶摩擦因数

    Table  1.   Top-of-rail friction coefficients on test sections of track

    测试位置/m 隧道路段钢轨 高架路段钢轨 测试位置/m 隧道路段钢轨 高架路段钢轨
    0~20 0.47 0.44 100~120 0.46 0.38
    20~40 0.44 0.42 120~140 0.54 0.43
    40~60 0.53 0.41 140~160 0.56 0.37
    60~80 0.51 0.40 160~180 0.52 0.38
    80~100 0.53 0.39 180~200 0.59 0.40
    下载: 导出CSV

    表  2  车辆参数

    Table  2.   Vehicle parameters

    参数 数值 参数 数值
    转向架中心距/m 11.14 二系横向、纵向刚度/(MN·m-1) 0.162 5
    轴距/m 2 二系垂向刚度/(MN·m-1) 0.4
    车轮滚动圆横向跨距/mm 1 493 车体侧滚转动惯量/(kg·m2) 21 312
    车轮滚动圆直径/mm 0.73 车体点头转动惯量/(kg·m2) 399 416
    车辆地板高度/m 1 车体摇头转动惯量/(kg·m2) 402 890
    实际最高运营速度/(km·h-1) 85 车体重心距轨面高/m 1.4
    轮对质量/t 1.007 直线电机质量/kg 1 480.5
    构架质量/t 1.900 直线电机侧滚转动惯量/(kg·m2) 33
    一系横向、纵向刚度/(MN·m-1) 5 直线电机点头转动惯量/(kg·m2) 646
    一系垂向刚度/(MN·m-1) 1.06 直线电机摇头转动惯量/(kg·m2) 647
    下载: 导出CSV

    表  3  不同措施下的改进效果

    Table  3.   Improvement effects under different measures

    措施 横向平稳性指标(实施措施前) 横向平稳性指标(实施措施后) 改进效果
    最大值 最大平均值 最大值 最大平均值 最大值(百分比) 最大平均值(百分比)
    降低轮轨匹配锥度 4.70 4.00 2.83 2.40 1.87(39.8%) 1.60(40.0%)
    减小周期轨向几何不平顺激励 4.70 4.00 2.76 2.71 1.94(41.3%) 1.29(32.3%)
    悬挂参数优化 4.06 3.94 3.38 2.90 0.68(16.7%) 1.04(26.4%)
    下载: 导出CSV
  • [1] 张斌, 关庆华, 李伟, 等. 轨道不平顺与轮轨匹配对地铁车辆晃动的影响[J]. 浙江大学学报(工学版), 2022, 56(9): 1772-1779.

    ZHANG Bin, GUAN Qing-hua, LI Wei, et al. Influence of track irregularity and wheel-rail profile compatibility on metro vehicle sway[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(9): 1772-1779.
    [2] SHI Y X, DAI H Y, WANG Q S, et al. Research on low-frequency swaying mechanism of metro vehicles based on wheel-rail relationship[J]. Shock and Vibration, 2020, 2020(1): 8878020.
    [3] KNOTHE K, BÖHM F. History of stability of railway and road vehicles[J]. Vehicle System Dynamics, 1999, 31(5/6): 283-323.
    [4] 池茂儒, 张卫华, 曾京, 等. 蛇行运动对铁道车辆平稳性的影响[J]. 振动工程学报, 2008, 21(6): 639-643.

    CHI Mao-ru, ZHANG Wei-hua, ZENG Jing, et al. Influence of hunting motion on ride quality of railway vehicle[J]. Journal of Vibration Engineering, 2008, 21(6): 639-643.
    [5] STICHEL S. On freight wagon dynamics and track deterioration[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1999, 213(4): 243-254. doi: 10.1243/0954409991531182
    [6] STICHEL S. How to improve the running behaviour of freight wagons with UIC-link suspension[J]. Vehicle System Dynamics, 1999, 33(S): 394-405.
    [7] SCHEFFEL H. The influence of the suspension on the hunting stability of railways[J]. Rail International, 1979, 10: 662-696.
    [8] MATSUDAIRA T. Hunting problem of high-speed railway vehicles with special reference to bogie design for the new tokaido line[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1965, 180(6): 58-66.
    [9] ANDERSON R J, FORTIN C. Low conicity instabilities in forced-steering railway vehicles[J]. Vehicle System Dynamics, 1988, 17: 17-28. doi: 10.1080/00423118808969237
    [10] LI Y X, CHI M R, GUO Z T, et al. An abnormal carbody swaying of intercity EMU train caused by low wheel-rail equivalent conicity and damping force unloading of yaw damper[J]. Railway Engineering Science, 2023, 31(3): 252-268. doi: 10.1007/s40534-022-00295-w
    [11] 冯永华, 张振先, 梁海啸, 等. 动车组低频晃车原因分析及应对措施[J]. 铁道机车车辆, 2021, 41(5): 11-16.

    FENG Yong-hua, ZHANG Zhen-xian, LIANG Hai-xiao, et al. Research on the causes and improvement measures for low-frequency shaking of EMU[J]. Railway Locomotive and Car, 2021, 41(5): 11-16.
    [12] SUN J F, CHI M R, JIN X S, et al. Experimental and numerical study on carbody hunting of electric locomotive induced by low wheel-rail contact conicity[J]. Vehicle System Dynamics, 2021, 59(2): 203-223. doi: 10.1080/00423114.2019.1674344
    [13] LI W, GUAN Q H, CHI M R, et al. An investigation into the influence of wheel-rail contact relationships on the carbody hunting stability of an electric locomotive[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(10): 1198-1209. doi: 10.1177/09544097221084412
    [14] NÖ M, HEDRICK J K. High speed stability for rail vehicles considering varying conicity and creep coefficients[J]. Vehicle System Dynamics, 1984, 13(6): 299-313. doi: 10.1080/00423118408968780
    [15] POLACH O. Characteristic parameters of nonlinear wheel/rail contact geometry[J]. Vehicle System Dynamics, 2010, 48(S1): 19-36.
    [16] 于海然, 张立民, 张艳斌, 等. 高速列车车体局部结构减振阻尼措施试验研究[J]. 大连交通大学学报, 2017, 38(2): 15-20.

    YU Hai-ran, ZHANG Li-min, ZHANG Yan-bin, et al. Experiment investigation and study of vibration damping measures on local structure of high-speed train bodies[J]. Journal of Dalian Jiaotong University, 2017, 38(2): 15-20.
    [17] WU Y, ZENG J, QU S, et al. Low-frequency carbody sway modelling based on low wheel-rail contact conicity analysis[J]. Shock and Vibration, 2020, 2020(1): 6671049.
    [18] 龚继军, 侯博, 王军平, 等. 钢轨打磨对动车组运行性能的影响[J]. 铁道建筑, 2019, 59(5): 145-149.

    GONG Ji-jun, HOU Bo, WANG Jun-ping, et al. Influence of rail profile grinding on running performance of EMU[J]. Railway Engineering, 2019, 59(5): 145-149.
    [19] 池茂儒, 蔡吴斌, 梁树林, 等. 高速铁路钢轨打磨偏差对车辆动力学性能的影响[J]. 中国机械工程, 2019, 30(3): 261-265, 283.

    CHI Mao-ru, CAI Wu-bin, LIANG Shu-lin, et al. Influences of rail grinding deviations on vehicle dynamics performances of high speed railways[J]. China Mechanical Engineering, 2019, 30(3): 261-265, 283.
    [20] 何旭升, 吴会超, 高峰. 高速动车组晃车机理试验研究[J]. 大连交通大学学报, 2017, 38(1): 21-25.

    HE Xu-sheng, WU Hui-chao, GAO Feng. Test study on carbody swing of high-speed EMUs[J]. Journal of Dalian Jiaotong University, 2017, 38(1): 21-25.
    [21] 吴会超, 霍文彪, 卢权, 等. 不同抗蛇行减振器对动车组蛇行失稳的影响研究[J]. 机车电传动, 2017(5): 30-34.

    WU Hui-chao, HUO Wen-biao, LU Quan, et al. Influence study of different anti-yaw dampers on EMUs hunting instability[J]. Electric Drive for Locomotives, 2017(5): 30-34.
    [22] HUANG C H, ZENG J, LIANG S L. Carbody hunting investigation of a high speed passenger car[J]. Journal of Mechanical Science and Technology, 2013, 27(8): 2283-2292. doi: 10.1007/s12206-013-0611-z
    [23] ALONSO A, GIMÉNEZ J G, GOMEZ E. Yaw damper modelling and its influence on railway dynamic stability[J]. Vehicle System Dynamics, 2011, 49(9): 1367-1387. doi: 10.1080/00423114.2010.515031
    [24] PRACNY V, MEYWERK M, LION A. Hybrid neural network model for history-dependent automotive shock absorbers[J]. Vehicle System Dynamics, 2007, 45(1): 1-14. doi: 10.1080/00423110600810499
    [25] HUANG C H, ZENG J. Suppression of the flexible carbody resonance due to bogie instability by using a DVA suspended on the bogie frame[J]. Vehicle System Dynamics, 2022, 60(9): 3051-3070. doi: 10.1080/00423114.2021.1930071
    [26] CHOI I I, UM J H, LEE J S, et al. The influence of track irregularities on the running behavior of high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227(1): 94-102. doi: 10.1177/0954409712455146
    [27] SKERMAN D, COLE C, SPIRYAGIN M. The effect of the wavelength of lateral track geometry irregularities on the response measurable by an instrumented freight wagon[J]. Vehicle System Dynamics, 2024, 62(3): 533-555. doi: 10.1080/00423114.2023.2183871
    [28] 叶一鸣, 贡照华. 机车晃车原因分析及其预防[J]. 铁道学报, 2003, 25(1): 113-117.

    YE Yi-ming, GONG Zhao-hua. Analysis of the cause and prevention for the swing of locomotive[J]. Journal of the China Railway Society, 2003, 25(1): 113-117.
    [29] WANG J C, LING L, DING X, et al. The influence of aerodynamic loads on carbody low-frequency hunting of high-speed trains[J]. International Journal of Structural Stability and Dynamics, 2022, 22(13): 2250145. doi: 10.1142/S0219455422501450
    [30] DING X, CHANG C, LING L, et al. Mechanism analysis of low-frequency swaying motion of high-speed trains induced by aerodynamic loads[J]. Journal of Vibration and Control, 2024, 30(13/14): 3141-3153.
    [31] JIANG P B, LING L, ZHAO J Y, et al. Experimental and numerical study on bogie hunting motion of metro vehicles induced by wheel concave wear[J]. Vehicle System Dynamics, 2025, 63(5): 920-943. doi: 10.1080/00423114.2024.2362942
    [32] 陈迪来, 沈钢, 宗聪聪. 基于模态追踪的地铁车辆低频横向晃动分析[J]. 铁道学报, 2019, 41(10): 47-52.

    CHEN Di-lai, SHEN Gang, ZONG Cong-cong. Analysis of low-frequency lateral swaying of metro vehicle based on mode tracing[J]. Journal of the China Railway Society, 2019, 41(10): 47-52.
    [33] 李然, 罗仁. 低轮轨摩擦因数对高速列车横向运动稳定性影响[J]. 机械工程与自动化, 2017(1): 20-21, 24.

    LI Ran, LUO Ren. Influence of low wheel/rail friction coefficient on lateral movement stability of high-speed train[J]. Mechanical Engineering & Automation, 2017(1): 20-21, 24.
    [34] 顾戌华, 夏禾, 郭薇薇. 直线电机列车-桥梁系统动力分析[J]. 振动工程学报, 2008, 21(6): 608-613.

    GU Xu-hua, XIA He, GUO Wei-wei. Dynamic analysis of LIM train-bridge system[J]. Journal of Vibration Engineering, 2008, 21(6): 608-613.
    [35] LI W, QI Y J, WEN Z F, et al. Coupling effect of track irregularity and wheel-rail contact conicity on carbody swaying of a metro vehicle: an experimental investigation[J]. Vehicle System Dynamics, 2025, 63(5): 944-963. doi: 10.1080/00423114.2024.2362947
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  74
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 录用日期:  2025-03-06
  • 修回日期:  2025-01-03
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回