留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机坪货运保障人员配置计划优化方法

毕军 回晶 成沛璇 王永兴

毕军, 回晶, 成沛璇, 王永兴. 机坪货运保障人员配置计划优化方法[J]. 交通运输工程学报, 2025, 25(4): 254-266. doi: 10.19818/j.cnki.1671-1637.2025.04.018
引用本文: 毕军, 回晶, 成沛璇, 王永兴. 机坪货运保障人员配置计划优化方法[J]. 交通运输工程学报, 2025, 25(4): 254-266. doi: 10.19818/j.cnki.1671-1637.2025.04.018
BI Jun, HUI Jing, CHENG Pei-xuan, WANG Yong-xing. Optimization method of personnel allocation plan for apron cargo support[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 254-266. doi: 10.19818/j.cnki.1671-1637.2025.04.018
Citation: BI Jun, HUI Jing, CHENG Pei-xuan, WANG Yong-xing. Optimization method of personnel allocation plan for apron cargo support[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 254-266. doi: 10.19818/j.cnki.1671-1637.2025.04.018

机坪货运保障人员配置计划优化方法

doi: 10.19818/j.cnki.1671-1637.2025.04.018
基金项目: 

国家自然科学基金项目 72171019

详细信息
    作者简介:

    毕军(1973-),男,山东济宁人,北京交通大学教授,工学博士,从事大数据智能交通决策优化研究

    通讯作者:

    BI Jun (1973-), male, professor, PhD, jbi@bjtu.edu.cn

  • 中图分类号: U695

Optimization method of personnel allocation plan for apron cargo support

Funds: 

National Natural Science Foundation of China 72171019

Article Text (Baidu Translation)
  • 摘要: 为了提高航空货运保障效率,优化机坪货运保障人员的配置方案,确保航空货运的高效运转与时效性,提出了一种兼顾人力资源优化与任务均衡性的科学优化方法;基于航空货运业务的需求特性,设计了机坪货运保障人员的编组构成;在充分考虑各项机坪货运保障流程相关约束的基础上,建立以最小化机坪货运保障总人力资源数与机坪货运保障人员任务量均衡为目标的优化模型;结合模型特点,提出了一种改进染色体搜索方向的任务分配优化策略,进而设计改进遗传算法实现对模型的高效求解;基于国内某机场的实际运行数据,设计了数值案例以验证模型和算法的可行性和有效性。研究结果表明:与传统遗传算法相比,设计的改进遗传算法在资源利用率方面有显著提升,所求解的机坪货运保障人力资源总数由44人减少至28人,人力资源利用率提高了36.36%;相比于Gurobi求解器直接计算所得结果,改进遗传算法在求解精度上与其保持高度一致,但在求解效率上展现出明显优势,Gurobi求解器的求解时间为112.28 s,而改进遗传算法的求解时间仅为其11.17%。提出的优化方法能够在多任务、多约束的动态环境中减少冗余配置和优化人员任务负荷分布,为优化航空货运保障人员配置问题提供了一种科学、高效的解决方案。

     

  • 图  1  机坪货运保障人员编组构成

    Figure  1.  Composition of apron cargo support personnel grouping

    图  2  机坪货运保障人员协同优化模型算法流程

    Figure  2.  Algorithm process of apron cargo support personnel collaborative optimization model

    图  3  染色体编码

    Figure  3.  Chromosome coding

    图  4  染色体交叉操作

    Figure  4.  Chromosome crossing operation

    图  5  装卸任务开始时间

    Figure  5.  Start time of loading and unloading tasks

    图  6  装卸任务所用时长情况

    Figure  6.  Time spent on loading and unloading tasks

    图  7  改进遗传算法收敛曲线

    Figure  7.  Convergence curves of improved genetic algorithm

    图  8  指挥员最优调度方案

    Figure  8.  Optimal scheduling scheme of commander

    图  9  装卸小组最优调度方案

    Figure  9.  Optimal scheduling scheme for support groups

    图  10  两种算法性能对比

    Figure  10.  Performance comparison of two algorithms

    图  11  Gurobi求解指挥员最优调度方案

    Figure  11.  Gurobi solves optimal scheduling scheme of commanders

    图  12  Gurobi求解装卸小组最优调度方案

    Figure  12.  Gurobi solves optimal scheduling scheme of support groups

    图  13  不同权重系数分配结果

    Figure  13.  Assignment results of different weight coefficient

    图  14  λ1=1.0、λ2=0时指挥员最优调度方案

    Figure  14.  Commanders' optimal scheduling scheme under conditions of λ1=1.0 and λ2=0

    图  15  λ1=1.0、λ2=0时装卸小组最优调度方案

    Figure  15.  Optimal scheduling scheme for support groups under conditions of λ1=1.0 and λ2=0

    图  16  λ1=0、λ2=1.0时指挥员最优调度方案

    Figure  16.  Commanders' optimal scheduling scheme under conditions of λ1=0 and λ2=1.0

    图  17  λ1=0、λ2=1.0时装卸小组最优调度方案

    Figure  17.  Optimal scheduling scheme for support groups under conditions of λ1=0 and λ2=1.0

    表  1  部分航班基本信息

    Table  1.   Basic information of some flights

    航班编号 进港航班实际落地时间 进港航班总卸货质量/kg 出港航班计划起飞时间 停机位 出港航班总装机质量/kg 装卸可用时间/min
    1 8:10 2 980 8:45 321 2 869 30
    2 8:25 720 9:00 313 914 30
    3 8:35 1 850 9:10 381 678 30
    4 8:40 2 030 9:15 325 550 30
    5 8:45 1 272 9:20 403 520 30
    6 8:45 570 9:20 331 164 30
    7 8:55 543 9:30 401 607 30
    8 9:05 2 693 9:40 336 505 30
    9 9:10 408 9:45 417 280 30
    10 9:15 2 366 9:50 342 1 024 30
    下载: 导出CSV

    表  2  遗传算法参数设置

    Table  2.   Setting of genetic algorithm parameters

    染色体数目 最大迭代数 交叉概率 变异概率 预估指挥员数量 预估装卸小组数量 λ1 λ2
    20 100 0.8 0.05 10 20 0.5 0.5
    下载: 导出CSV

    表  3  Gurobi求解器与改进遗传算法求解结果

    Table  3.   Results of Gurobi solver and improved genetic algorithm

    任务规模 Gurobi求解器 改进遗传算法
    P1 P2 t/s P1 P2 t/s
    204 28 6.28 112.28 28 6.28 12.55
    下载: 导出CSV
  • [1] 白杨, 朱金福. 基于随机Petri网的航空货运出港系统分析[J]. 数理统计与管理, 2012, 31(2): 199-206.

    BAI Yang, ZHU Jin-fu. Analysis of air cargo export handling system based on stochastic Petri net[J]. Journal of Applied Statistics and Management, 2012, 31(2): 199-206.
    [2] PATEL M H, DESSOUKY Y, SOLANKI S, et al. Air cargo pickup schedule for single delivery location[J]. Computers & Industrial Engineering, 2006, 51(3): 553-565.
    [3] AZADIAN F, MURAT A E, CHINNAM R B. Dynamic routing of time-sensitive air cargo using real-time information[J]. Transportation Research Part E: Logistics and Transporta-tion Review, 2012, 48(1): 355-372. doi: 10.1016/j.tre.2011.07.004
    [4] SELINKA G, FRANZ A, STOLLETZ R. Time-dependent performance approximation of truck handling operations at an air cargo terminal[J]. Computers and Operations Research, 2016, 65: 164-173. doi: 10.1016/j.cor.2014.06.005
    [5] 迟越. 天津机场货运业务流程优化研究[D]. 天津: 中国民航大学, 2016.

    CHI Yue. Research on air cargo business process optimiza-tion of Tianjin airport[D]. Tianjin: Civil Aviation University of China, 2016.
    [6] 叶莘. 南宁机场货站国内出港航班业务流程优化研究[D]. 南宁: 广西大学, 2018.

    YE Shen. Research on the business process optimization of domestic departure flights of Nanning airport cargo terminal[D]. Nanning: Guangxi University, 2018.
    [7] XIAO F, GUO S Q, HUANG L, et al. Integrated aircraft tail assignment and cargo routing problem with through cargo consideration[J]. Transportation Research Part B: Methodo-logical, 2022, 162: 328-351. doi: 10.1016/j.trb.2022.06.005
    [8] YAN S Y, CHEN C H, CHEN M. Stochastic models for air cargo terminal manpower supply planning in long-term operations[J]. Applied Stochastic Models in Business and Industry, 2008, 24(3): 261-275. doi: 10.1002/asmb.710
    [9] GOPALAKRISHNAN B, JOHNSON E L. Airline crew scheduling: state-of-the-art[J]. Annals of Operations Research, 2005, 140(1): 305-337. doi: 10.1007/s10479-005-3975-3
    [10] FRELING R, LENTINK R M, WAGELMANS A P M. A decision support system for crew planning in passenger transportation using a flexible branch-and-price algorithm[J]. Annals of Operations Research, 2004, 127(1-4): 203-222. doi: 10.1023/B:ANOR.0000019090.39650.32
    [11] 贾雯秋. 机场货运人力资源排班及调度研究[D]. 天津: 中国民航大学, 2010.

    JIA Wen-qiu. Research on scheduling and dispatching of airport freight human resources[D]. Tianjin: Civil Aviation University of China, 2010.
    [12] 包丹文, 陈卓, 姚馨宇, 等. 基于混合策略的机坪车辆主动式实时调度方法[J]. 交通运输工程学报, 2024, 24(3): 251-265. doi: 10.19818/j.cnki.1671-1637.2024.03.018

    BAO Dan-wen, CHEN Zhuo, YAO Xin-yu, et al. An active real-time scheduling method for apron vehicles based on a hybrid strategy[J]. Journal of Transportation Engineering, 2024, 24(3): 251-265. doi: 10.19818/j.cnki.1671-1637.2024.03.018
    [13] 杨珏. 基于遗传算法的机场特种车辆调度应用研究[J]. 计算机技术与发展, 2019, 29(3): 164-168.

    YANG Jue. Research on airport special vehicle scheduling based on genetic algorithm[J]. Computer Technology and Development, 2019, 29(3): 164-168.
    [14] LIU Y H, WU J J, TANG J, et al. Scheduling optimisation of multi-type special vehicles in an airport[J]. Transport-metrica B: Transport Dynamics, 2022, 10(1): 954-970. doi: 10.1080/21680566.2021.1983484
    [15] YUAN Y, HAN Y F, XUE J Y, et al. A dynamic dispatching method in the unmanned airport baggage transportation system[C]//IEEE. 23th IEEE International Conference on Mobile Data Management (MDM), New York: IEEE, 2022: 500-505.
    [16] ZHU S R, SUN H J, GUO X. Cooperative scheduling optimization for ground-handling vehicles by considering flights'uncertainty[J]. Computers & Industrial Engineering, 2022, 169: 108092.
    [17] 姜雨, 张诗淼, 陈名扬, 等. 考虑多车型协同的机坪保障车辆双阶段调度[J]. 北京航空航天大学学报, 2025, 51(6): 1926-1934.

    JIANG Yu, ZHANG Shi-miao, CHEN Ming-yang, et al. Dual-phase scheduling of apron support vehicles considering multi-vehicle coordination[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(6): 1926-1934.
    [18] BAO D W, ZHOU J Y, ZHANG Z Q, et al. Mixed fleet scheduling method for airport ground service vehicles under the trend of electrification[J]. Journal of Air Transport Management, 2023, 108: 102379-102396.
    [19] LI Q W, BI J, LI Z Y. Research on ferry vehicle scheduling problem within airport operations[C]//IEEE. International Symposium on Computational Intelligence and Design. New York: IEEE, 2017: 248-251.
    [20] 何丹妮. 大型机场航班过站地面服务车辆调度问题研究: 以摆渡车为例[D]. 北京: 北京交通大学, 2018.

    HE Dan-ni. Research on scheduling of ground service vehicles for large airport airside transition-illustrated by the case of ferry bus[D]. Beijing: Beijing Jiaotong University, 2018.
    [21] 冯霞, 唐菱, 卢敏. 面向层次资质的机场外航服务人员排班研究[J]. 交通运输系统工程与信息, 2019, 19(2): 231-237.

    FENG Xia, TANG Ling, LU Min. Hierarchical skills personnel scheduling of foreign airline service[J]. Journal of Transpor-tation Systems Engineering and Information Technology, 2019, 19(2): 231-237.
    [22] 衡红军, 戚馨桐. 考虑任务均衡的加油车动态调度问题[J]. 计算机工程与科学, 2020, 42(5): 923-930.

    HENG Hong-jun, QI Xin-tong. Dynamic refueling vehicle scheduling problem considering task balance[J]. Computer Engineering & Science, 2020, 42(5): 923-930.
    [23] HAN X, ZHAO P X, MENG Q C, et al. Optimal scheduling of airport ferry vehicles based on capacity network[J]. Annals of Operations Research, 2020, 295(1): 163-182.
    [24] 刘祎. 机场高峰时段摆渡车调度建模研究[D]. 北京: 北京交通大学, 2020.

    LIU Yi. Research on modeling of ferry bus scheduling during rush hours in airports[D]. Beijing: Beijing Jiaotong University, 2020.
    [25] ZHAO P X, GAO W Q, HAN X, et al. Bi-objective collaborative scheduling optimization of airport ferry vehicle and tractor[J]. International Journal of Simulation Modelling, 2019, 18(2): 355-365.
    [26] XU W, SUN H Y, AWAGA A L, et al. Optimization approaches for solving production scheduling problem: a brief overview and a case study for hybrid flow shop using genetic algorithms[J]. Advances in Production Engineering & Management, 2022, 17(1): 45-56.
    [27] 上官伟, 庞晓宇, 李秋艳, 等. 车路协同环境下群体车辆诱导与协同运行方法[J]. 交通运输工程学报, 2022, 22(3): 68-78. doi: 10.19818/j.cnki.1671-1637.2022.03.005

    SHANG Guan-wei, PANG Xiao-yu, LI Qiu-yan, et al. Methods for group vehicle guidance and cooperative operation in cooperative driving Environments[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 68-78. doi: 10.19818/j.cnki.1671-1637.2022.03.005
    [28] 刘卓承, 张云雷, 刘涛, 等. 基于DEM数据和遗传算法的对海雷达部署优化研究[J]. 指挥控制与仿真, 2023, 45(3): 113-118.

    LIU Zhuo-cheng, ZHANG Yun-lei, LIU Tao, et al. Research on optimization of seaside radar deployment based on DEM data and GA[J]. Command Control & Simulation, 2023, 45(3): 113-118.
    [29] 姜雨, 刘振宇, 胡志韬, 等. 大型机场进场航空器联合调度模型[J]. 交通运输工程学报, 2022, 22(1): 205-215. doi: 10.19818/j.cnki.1671-1637.2022.01.017

    JIANG Yu, LIU Zhen-yu, HU Zhi-tao, et al. A joint dispatch model for aircraft entering large airports[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 205-215. doi: 10.19818/j.cnki.1671-1637.2022.01.017
    [30] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  445
  • HTML全文浏览量:  58
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-20
  • 录用日期:  2025-04-02
  • 修回日期:  2025-02-05
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回