Optimization method of personnel allocation plan for apron cargo support
-
摘要: 为了提高航空货运保障效率,优化机坪货运保障人员的配置方案,确保航空货运的高效运转与时效性,提出了一种兼顾人力资源优化与任务均衡性的科学优化方法;基于航空货运业务的需求特性,设计了机坪货运保障人员的编组构成;在充分考虑各项机坪货运保障流程相关约束的基础上,建立以最小化机坪货运保障总人力资源数与机坪货运保障人员任务量均衡为目标的优化模型;结合模型特点,提出了一种改进染色体搜索方向的任务分配优化策略,进而设计改进遗传算法实现对模型的高效求解;基于国内某机场的实际运行数据,设计了数值案例以验证模型和算法的可行性和有效性。研究结果表明:与传统遗传算法相比,设计的改进遗传算法在资源利用率方面有显著提升,所求解的机坪货运保障人力资源总数由44人减少至28人,人力资源利用率提高了36.36%;相比于Gurobi求解器直接计算所得结果,改进遗传算法在求解精度上与其保持高度一致,但在求解效率上展现出明显优势,Gurobi求解器的求解时间为112.28 s,而改进遗传算法的求解时间仅为其11.17%。提出的优化方法能够在多任务、多约束的动态环境中减少冗余配置和优化人员任务负荷分布,为优化航空货运保障人员配置问题提供了一种科学、高效的解决方案。Abstract: To enhance the efficiency of air cargo support operations, optimize the allocation of apron cargo support personnel, and ensure the efficient operation and timeliness of air cargo services, a scientifically optimized method that balances human resource optimization and task distribution was proposed. Based on the demand characteristics of the air cargo business, the composition of the apron cargo support personnel groupings was designed. By fully considering the constraints related to the apron cargo support processes, an optimization model for the apron cargo support personnel allocation plan was built. The objective was to minimize the total number of human resources and balance the task load. In line with the characteristics of the model, a task allocation optimization strategy was proposed to enhance the chromosome search direction, and an improved genetic algorithm was subsequently developed to solve the model efficiently. A numerical case study based on actual operational data from a domestic airport was conducted to verify the feasibility and effectiveness of the proposed model and algorithm. The results show that, compared with the traditional genetic algorithm, the proposed improved genetic algorithm significantly enhances the resource utilization rate. The total number of apron cargo support personnel is reduced from 44 to 28, and the human resource utilization rate is increased by 36.36%. In addition, compared with the results obtained directly from the Gurobi solver, the improved genetic algorithm maintains a high level of accuracy while demonstrating a clear advantage in computational efficiency. The Gurobi solver takes 112.28 s to obtain a solution, whereas the improved genetic algorithm requires only 11.17% of that time. The proposed optimization method can reduce redundant configurations and optimize the distribution of personnel task load in a multi-task and multi-constraint dynamic environment. It provides a scientific and efficient solution for the problem of the allocation of air cargo support personnel.
-
表 1 部分航班基本信息
Table 1. Basic information of some flights
航班编号 进港航班实际落地时间 进港航班总卸货质量/kg 出港航班计划起飞时间 停机位 出港航班总装机质量/kg 装卸可用时间/min 1 8:10 2 980 8:45 321 2 869 30 2 8:25 720 9:00 313 914 30 3 8:35 1 850 9:10 381 678 30 4 8:40 2 030 9:15 325 550 30 5 8:45 1 272 9:20 403 520 30 6 8:45 570 9:20 331 164 30 7 8:55 543 9:30 401 607 30 8 9:05 2 693 9:40 336 505 30 9 9:10 408 9:45 417 280 30 10 9:15 2 366 9:50 342 1 024 30 表 2 遗传算法参数设置
Table 2. Setting of genetic algorithm parameters
染色体数目 最大迭代数 交叉概率 变异概率 预估指挥员数量 预估装卸小组数量 λ1 λ2 20 100 0.8 0.05 10 20 0.5 0.5 表 3 Gurobi求解器与改进遗传算法求解结果
Table 3. Results of Gurobi solver and improved genetic algorithm
任务规模 Gurobi求解器 改进遗传算法 P1 P2 t/s P1 P2 t/s 204 28 6.28 112.28 28 6.28 12.55 -
[1] 白杨, 朱金福. 基于随机Petri网的航空货运出港系统分析[J]. 数理统计与管理, 2012, 31(2): 199-206.BAI Yang, ZHU Jin-fu. Analysis of air cargo export handling system based on stochastic Petri net[J]. Journal of Applied Statistics and Management, 2012, 31(2): 199-206. [2] PATEL M H, DESSOUKY Y, SOLANKI S, et al. Air cargo pickup schedule for single delivery location[J]. Computers & Industrial Engineering, 2006, 51(3): 553-565. [3] AZADIAN F, MURAT A E, CHINNAM R B. Dynamic routing of time-sensitive air cargo using real-time information[J]. Transportation Research Part E: Logistics and Transporta-tion Review, 2012, 48(1): 355-372. doi: 10.1016/j.tre.2011.07.004 [4] SELINKA G, FRANZ A, STOLLETZ R. Time-dependent performance approximation of truck handling operations at an air cargo terminal[J]. Computers and Operations Research, 2016, 65: 164-173. doi: 10.1016/j.cor.2014.06.005 [5] 迟越. 天津机场货运业务流程优化研究[D]. 天津: 中国民航大学, 2016.CHI Yue. Research on air cargo business process optimiza-tion of Tianjin airport[D]. Tianjin: Civil Aviation University of China, 2016. [6] 叶莘. 南宁机场货站国内出港航班业务流程优化研究[D]. 南宁: 广西大学, 2018.YE Shen. Research on the business process optimization of domestic departure flights of Nanning airport cargo terminal[D]. Nanning: Guangxi University, 2018. [7] XIAO F, GUO S Q, HUANG L, et al. Integrated aircraft tail assignment and cargo routing problem with through cargo consideration[J]. Transportation Research Part B: Methodo-logical, 2022, 162: 328-351. doi: 10.1016/j.trb.2022.06.005 [8] YAN S Y, CHEN C H, CHEN M. Stochastic models for air cargo terminal manpower supply planning in long-term operations[J]. Applied Stochastic Models in Business and Industry, 2008, 24(3): 261-275. doi: 10.1002/asmb.710 [9] GOPALAKRISHNAN B, JOHNSON E L. Airline crew scheduling: state-of-the-art[J]. Annals of Operations Research, 2005, 140(1): 305-337. doi: 10.1007/s10479-005-3975-3 [10] FRELING R, LENTINK R M, WAGELMANS A P M. A decision support system for crew planning in passenger transportation using a flexible branch-and-price algorithm[J]. Annals of Operations Research, 2004, 127(1-4): 203-222. doi: 10.1023/B:ANOR.0000019090.39650.32 [11] 贾雯秋. 机场货运人力资源排班及调度研究[D]. 天津: 中国民航大学, 2010.JIA Wen-qiu. Research on scheduling and dispatching of airport freight human resources[D]. Tianjin: Civil Aviation University of China, 2010. [12] 包丹文, 陈卓, 姚馨宇, 等. 基于混合策略的机坪车辆主动式实时调度方法[J]. 交通运输工程学报, 2024, 24(3): 251-265. doi: 10.19818/j.cnki.1671-1637.2024.03.018BAO Dan-wen, CHEN Zhuo, YAO Xin-yu, et al. An active real-time scheduling method for apron vehicles based on a hybrid strategy[J]. Journal of Transportation Engineering, 2024, 24(3): 251-265. doi: 10.19818/j.cnki.1671-1637.2024.03.018 [13] 杨珏. 基于遗传算法的机场特种车辆调度应用研究[J]. 计算机技术与发展, 2019, 29(3): 164-168.YANG Jue. Research on airport special vehicle scheduling based on genetic algorithm[J]. Computer Technology and Development, 2019, 29(3): 164-168. [14] LIU Y H, WU J J, TANG J, et al. Scheduling optimisation of multi-type special vehicles in an airport[J]. Transport-metrica B: Transport Dynamics, 2022, 10(1): 954-970. doi: 10.1080/21680566.2021.1983484 [15] YUAN Y, HAN Y F, XUE J Y, et al. A dynamic dispatching method in the unmanned airport baggage transportation system[C]//IEEE. 23th IEEE International Conference on Mobile Data Management (MDM), New York: IEEE, 2022: 500-505. [16] ZHU S R, SUN H J, GUO X. Cooperative scheduling optimization for ground-handling vehicles by considering flights'uncertainty[J]. Computers & Industrial Engineering, 2022, 169: 108092. [17] 姜雨, 张诗淼, 陈名扬, 等. 考虑多车型协同的机坪保障车辆双阶段调度[J]. 北京航空航天大学学报, 2025, 51(6): 1926-1934.JIANG Yu, ZHANG Shi-miao, CHEN Ming-yang, et al. Dual-phase scheduling of apron support vehicles considering multi-vehicle coordination[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(6): 1926-1934. [18] BAO D W, ZHOU J Y, ZHANG Z Q, et al. Mixed fleet scheduling method for airport ground service vehicles under the trend of electrification[J]. Journal of Air Transport Management, 2023, 108: 102379-102396. [19] LI Q W, BI J, LI Z Y. Research on ferry vehicle scheduling problem within airport operations[C]//IEEE. International Symposium on Computational Intelligence and Design. New York: IEEE, 2017: 248-251. [20] 何丹妮. 大型机场航班过站地面服务车辆调度问题研究: 以摆渡车为例[D]. 北京: 北京交通大学, 2018.HE Dan-ni. Research on scheduling of ground service vehicles for large airport airside transition-illustrated by the case of ferry bus[D]. Beijing: Beijing Jiaotong University, 2018. [21] 冯霞, 唐菱, 卢敏. 面向层次资质的机场外航服务人员排班研究[J]. 交通运输系统工程与信息, 2019, 19(2): 231-237.FENG Xia, TANG Ling, LU Min. Hierarchical skills personnel scheduling of foreign airline service[J]. Journal of Transpor-tation Systems Engineering and Information Technology, 2019, 19(2): 231-237. [22] 衡红军, 戚馨桐. 考虑任务均衡的加油车动态调度问题[J]. 计算机工程与科学, 2020, 42(5): 923-930.HENG Hong-jun, QI Xin-tong. Dynamic refueling vehicle scheduling problem considering task balance[J]. Computer Engineering & Science, 2020, 42(5): 923-930. [23] HAN X, ZHAO P X, MENG Q C, et al. Optimal scheduling of airport ferry vehicles based on capacity network[J]. Annals of Operations Research, 2020, 295(1): 163-182. [24] 刘祎. 机场高峰时段摆渡车调度建模研究[D]. 北京: 北京交通大学, 2020.LIU Yi. Research on modeling of ferry bus scheduling during rush hours in airports[D]. Beijing: Beijing Jiaotong University, 2020. [25] ZHAO P X, GAO W Q, HAN X, et al. Bi-objective collaborative scheduling optimization of airport ferry vehicle and tractor[J]. International Journal of Simulation Modelling, 2019, 18(2): 355-365. [26] XU W, SUN H Y, AWAGA A L, et al. Optimization approaches for solving production scheduling problem: a brief overview and a case study for hybrid flow shop using genetic algorithms[J]. Advances in Production Engineering & Management, 2022, 17(1): 45-56. [27] 上官伟, 庞晓宇, 李秋艳, 等. 车路协同环境下群体车辆诱导与协同运行方法[J]. 交通运输工程学报, 2022, 22(3): 68-78. doi: 10.19818/j.cnki.1671-1637.2022.03.005SHANG Guan-wei, PANG Xiao-yu, LI Qiu-yan, et al. Methods for group vehicle guidance and cooperative operation in cooperative driving Environments[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 68-78. doi: 10.19818/j.cnki.1671-1637.2022.03.005 [28] 刘卓承, 张云雷, 刘涛, 等. 基于DEM数据和遗传算法的对海雷达部署优化研究[J]. 指挥控制与仿真, 2023, 45(3): 113-118.LIU Zhuo-cheng, ZHANG Yun-lei, LIU Tao, et al. Research on optimization of seaside radar deployment based on DEM data and GA[J]. Command Control & Simulation, 2023, 45(3): 113-118. [29] 姜雨, 刘振宇, 胡志韬, 等. 大型机场进场航空器联合调度模型[J]. 交通运输工程学报, 2022, 22(1): 205-215. doi: 10.19818/j.cnki.1671-1637.2022.01.017JIANG Yu, LIU Zhen-yu, HU Zhi-tao, et al. A joint dispatch model for aircraft entering large airports[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 205-215. doi: 10.19818/j.cnki.1671-1637.2022.01.017 [30] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. -
下载: