留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多车响应的网联自动驾驶纵横向协同控制方法

曲大义 李奥迪 张智 魏传宝 王韬

曲大义, 李奥迪, 张智, 魏传宝, 王韬. 多车响应的网联自动驾驶纵横向协同控制方法[J]. 交通运输工程学报, 2025, 25(4): 281-295. doi: 10.19818/j.cnki.1671-1637.2025.04.020
引用本文: 曲大义, 李奥迪, 张智, 魏传宝, 王韬. 多车响应的网联自动驾驶纵横向协同控制方法[J]. 交通运输工程学报, 2025, 25(4): 281-295. doi: 10.19818/j.cnki.1671-1637.2025.04.020
QU Da-yi, LI Ao-di, ZHANG Zhi, WEI Chuan-bao, WANG Tao. Multi-vehicle responsive longitudinal and lateral cooperative control method for networked autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 281-295. doi: 10.19818/j.cnki.1671-1637.2025.04.020
Citation: QU Da-yi, LI Ao-di, ZHANG Zhi, WEI Chuan-bao, WANG Tao. Multi-vehicle responsive longitudinal and lateral cooperative control method for networked autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 281-295. doi: 10.19818/j.cnki.1671-1637.2025.04.020

多车响应的网联自动驾驶纵横向协同控制方法

doi: 10.19818/j.cnki.1671-1637.2025.04.020
基金项目: 

国家自然科学基金项目 52272311

详细信息
    作者简介:

    曲大义(1973-),男,山东青岛人,青岛理工大学教授,工学博士,从事车路协同及安全控制研究

  • 中图分类号: U491.2

Multi-vehicle responsive longitudinal and lateral cooperative control method for networked autonomous driving

Funds: 

National Natural Science Foundation of China 52272311

More Information
Article Text (Baidu Translation)
  • 摘要: 为了研究网联环境下的多车协同控制,提高道路通行效率,提出了网联自动驾驶的分层协同控制框架;将网联自动驾驶协同控制分为上下两层,首先针对交通管理层确定了纵向行驶策略,采用微分博弈控制网联队列的纵向运动,以优化队列中车辆的运行状态;其次针对车辆控制层中转向机构的控制问题,提出了考虑前馈的反馈线性二次调节器(LQR),并在此基础上使用人工势场法动态调节LQR参数矩阵,以处理不同距离的障碍物,提高车辆横向控制的精确性;然后针对网联自动驾驶车辆(CAV)汇入队列的安全问题,以虚拟队列为基础,考虑车身尺寸和临界碰撞约束来控制车辆,确保CAV汇入的安全性; 最终使用CarSim/Simulink搭建汇入场景进行仿真试验,分析验证多车纵横向协同控制可行性和有效性。仿真结果表明:微分博弈应用速度为16.67 m·s-1时,车辆队列内间距大于20 m,而22.22 m·s-1时车辆队列内间距小于40 m,证明该策略在保证安全车距的前提下提高了通行效率;与传统LQR相比,考虑势场强度的LQR在22.22 m·s-1的速度下横向误差与航向误差分别降低了6.19%、7.66%。针对网联环境下多车响应的自动驾驶协同控制问题,提出的纵横向分层协同控制框架在满足车辆队列纵向安全控制和稳定性,以及提高车辆横向控制精确性的基础上,实现了CAV汇入网联队列的多车协同和安全运行。

     

  • 图  1  网联自动驾驶车辆分层控制框架

    Figure  1.  Hierarchical control framework for CAV

    图  2  网联车辆队列切入流程

    Figure  2.  Connected vehicle platoon cut-in process

    图  3  CAV切入间隙适配

    Figure  3.  CAV cut-in gap adaptation

    图  4  汇入车辆与周围车辆运动关系

    Figure  4.  Relationship between incoming and outgoing vehicle movements

    图  5  网联车辆队列纵向控制方法

    Figure  5.  Longitudinal control method of connected vehicle platoon

    图  6  车辆动力学模型

    Figure  6.  Vehicle dynamics model

    图  7  CAV横向位姿误差

    Figure  7.  CAV lateral position and heading errors

    图  8  车道线势场

    Figure  8.  Potential field of lane line

    图  9  车辆行驶环境总势场

    Figure  9.  Total potential field of vehicle driving environment

    图  10  在16.67 m·s-1速度下车辆队列纵向控制结果

    Figure  10.  Results of longitudinal control of vehicle platoon at a speed of 16.67 m·s-1

    图  11  在16.67 m·s-1速度下车辆队列的速度和加速度

    Figure  11.  Vehicle platoon speed and acceleration at a speed of 16.67 m·s-1

    图  12  16.67 m·s-1速度下车辆队列的车头间距与跟驰时距偏差

    Figure  12.  Vehicle head spacing and following distance deviation in a vehicle platoon at a speed of 16.67 m·s-1

    图  13  16.67 m·s-1速度下车辆横向跟踪轨迹

    Figure  13.  Vehicle lateral tracking trajectory at a speed of 16.67 m·s-1

    图  14  16.67 m·s-1速度下车辆控制量与航向角

    Figure  14.  Vehicle control variables and heading angle at a speed of 16.67 m·s-1

    图  15  16.67 m·s-1速度下车辆控制误差信息

    Figure  15.  Vehicle control error information at a speed of 16.67 m·s-1

    图  16  16.67 m·s-1速度下车辆汇入三维轨迹

    Figure  16.  Vehicle merging into a 3D trajectory at a speed of 16.67 m·s-1

    图  17  22.22 m·s-1速度下车辆队列纵向控制结果

    Figure  17.  Results of longitudinal control of vehicle platoon at a speed of 22.22 m·s-1

    图  18  22.22 m·s-1速度下车辆队列的速度和加速度

    Figure  18.  Vehicle platoon speed and acceleration at a speed of 22.22 m·s-1

    图  19  22.22 m·s-1速度下车辆队列的车头间距与跟驰时距偏差

    Figure  19.  Vehicle head spacing and following distance deviation in a vehicle platoon at a speed of 22.22 m·s-1

    图  20  22.22 m·s-1速度下车辆横向跟踪轨迹

    Figure  20.  Vehicle lateral tracking trajectory at a speed of 22.22 m·s-1

    图  21  22.22 m·s-1速度下车辆控制量与航向角

    Figure  21.  Vehicle control variables and heading angle at a speed of 22.22 m·s-1

    图  22  22.22 m·s-1速度下车辆控制误差信息

    Figure  22.  Vehicle control error information at a speed of 22.22 m·s-1

    图  23  22.22 m·s-1速度下车辆汇入三维轨迹

    Figure  23.  Vehicle merging into a 3D trajectory at a speed of 22.22 m·s-1

    表  1  车辆模型参数

    Table  1.   Parameters of vehicle model

    车辆参数 参数数值
    车辆质量/kg 2 020
    前轴到质心的距离/m 1.265
    后轴到质心的距离/m 1.682
    转动惯量/(kg·m2) 4 095
    轮胎有效滚动半径/m 0.353
    前轮侧偏刚度/(N·rad-1) -175 016
    后轮侧偏刚度/(N·rad-1) -130 634
    下载: 导出CSV
  • [1] CALEFFI F, RODRIGUES L S, STAMBOROSKI J S, et al. Small-scale self-driving cars: a systematic literature review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2024, 11(2): 271-292. doi: 10.1016/j.jtte.2023.09.005
    [2] GE X H, HAN Q L, DING L, et al. Dynamic event-triggered distributed coordination control and its applications: a survey of trends and techniques[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(9): 3112-3125. doi: 10.1109/TSMC.2020.3010825
    [3] MILANÉS V, SHLADOVER S E, SPRING J, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 296-305. doi: 10.1109/TITS.2013.2278494
    [4] 李永福, 何昌鹏, 朱浩, 等. 通信延时环境下异质网联车辆队列非线性纵向控制[J]. 自动化学报, 2021, 47(12): 2841-2856.

    LI Yong-fu, HE Chang-peng, ZHU Hao, et al. Nonlinear longitudinal control for heterogeneous connected vehicle platoon in the presence of communication delays[J]. Acta Automatica Sinica, 2021, 47(12): 2841-2856.
    [5] 衣鹏, 潘越, 王文远, 等. 基于博弈论的多车智能驾驶交互决策综述[J]. 控制与决策, 2023, 38(5): 1159-1175.

    YI Peng, PAN Yue, WANG Wen-yuan, et al. A review on interactive decision-making of multi-vehicle autonomous driving with a game theoretical perspective[J]. Control and Decision, 2023, 38(5): 1159-1175.
    [6] 刘坤, 郑晓帅, 林业茗, 等. 基于微分博弈的追逃问题最优策略设计[J]. 自动化学报, 2021, 47(8): 1840-1854.

    LIU Kun, ZHENG Xiao-shuai, LIN Ye-ming, et al. Design of optimal strategies for the pursuit-evasion problem based on differential game[J]. Acta Automatica Sinica, 2021, 47(8): 1840-1854.
    [7] ABDELMONIEM A, ALI A, TAHER Y, et al. Fuzzy predictive Stanley lateral controller with adaptive prediction horizon[J]. Measurement and Control, 2023, 56(9/10): 1510-1522.
    [8] THRUN S, MONTEMERLO M, DAHLKAMP H, et al. Stanley: the robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692. doi: 10.1002/rob.20147
    [9] SHEN C, GUO H Y, LIU F, et al. MPC-based path tracking controller design for autonomous ground vehicles[C]// IEEE. Proceeding of 2017 36th Chinese Control Conference. New York: IEEE, 2017: 9584-9589.
    [10] HUANG Z C, CHU D F, WU C Z, et al. Path planning and cooperative control for automated vehicle platoon using hybrid automata[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3): 959-974.
    [11] 周卫琪, 赵羿寒, 刘擎超, 等. 基于改进LQR的车辆路径跟踪横向控制策略[J]. 华中科技大学学报(自然科学版), 2024, 52(3): 135-141.

    ZHOU Wei-qi, ZHAO Yi-han, LIU Qing-chao, et al. Lateral control strategy of vehicle path tracking based on improved LQR[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(3): 135-141.
    [12] MENHOUR L, CHARARA A, LECHNER D, et al. Switched LQR/H steering vehicle control to detect critical driving situations[J]. Control Engineering Practice, 2014, 24: 1-14. doi: 10.1016/j.conengprac.2013.11.007
    [13] 辛琪, 王嘉琪, 付锐, 等. 合用相位信控路口生态驾驶轨迹优化模型[J]. 交通运输工程学报, 2025, 25(3): 346-361. doi: 10.19818/j.cnki.1671-1637.2025.03.023

    XIN Qi, WANG Jia-qi, FU Rui, et al. Eco-driving trajectory optimization model at signalized intersection considering shared phase[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 346-361. doi: 10.19818/j.cnki.1671-1637.2025.03.023
    [14] GOLI M, ESKANDARIAN A. MPC-based lateral controller with look-ahead design for autonomous multi-vehicle merging into platoon[C]//IEEE. 2019 American Control Conference. New York: IEEE, 2019: 5284-5291.
    [15] 王正武, 潘军良, 陈涛, 等. 单向三车道高速公路合流区智能网联车辆协同汇入控制[J]. 交通运输工程学报, 2023, 23(6): 270-282.

    WANG Zheng-wu, PAN Jun-liang, CHEN Tao, et al. Cooperative merging control of connected and automated vehicles in merging area for one-way three-lane freeway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 270-282.
    [16] 朱永薪, 李永福, 朱浩, 等. 通信延时环境下基于观测器的智能网联车辆队列分层协同纵向控制[J]. 自动化学报, 2023, 49(8): 1785-1798.

    ZHU Yong-xin, LI Yong-fu, ZHU Hao, et al. Observer-based longitudinal control for connected and automated vehicles platoon subject to communication delay[J]. Acta Automatica Sinica, 2023, 49(8): 1785-1798.
    [17] JING S C, HUI F, ZHAO X M, et al. Integrated longitudinal and lateral hierarchical control of cooperative merging of connected and automated vehicles at on-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24248-24262. doi: 10.1109/TITS.2022.3204033
    [18] 曲大义, 戴守晨, 陈意成, 等. 基于轨迹数据的车辆博弈切出及汇入行为建模[J]. 吉林大学学报(工学版), (2024-03-05), https://doi.org/10.13229/j.cnki.jdxbgxb.20231360.

    QU Da-yi, DAI Shou-chen, CHEN Yi-cheng, et al. Modeling of vehicle game cut-out and merging behavior based on trajectory data[J]. Journal of Jilin University (Engineering and Technology Edition), (2024-03-05), https://doi.org/10.13229/j.cnki.jdxbgxb.20231360.
    [19] ZHU Y X, LI Y F, JIAO A, et al. Hierarchical control of connected vehicle platoon by simultaneously considering the vehicle kinematics and dynamics[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 1333-1345.
    [20] LI Y F, LV Q X, ZHU H, et al. Variable time headway policy based platoon control for heterogeneous connected vehicles with external disturbances[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21190-21200.
    [21] 张荣辉, 游峰, 初鑫男, 等. 车-车协同下无人驾驶车辆的换道汇入控制方法[J]. 中国公路学报, 2018, 31(4): 180-191.

    ZHANG Rong-hui, YOU Feng, CHU Xin-nan, et al. Lane change merging control method for unmanned vehicle under V2V cooperative environment[J]. China Journal of Highway and Transport, 2018, 31(4): 180-191.
    [22] 李永福, 周发涛, 黄龙旺, 等. 基于深度强化学习的网联车辆队列纵向控制[J]. 控制与决策, 2024, 39(6): 1879-1887.

    LI Yong-fu, ZHOU Fa-tao, HUANG Long-wang, et al. Longitudinal control of connected vehicle platoon based on deep reinforcement learning[J]. Control and Decision, 2024, 39(6): 1879-1887.
    [23] HAO L Y, LI P, GUO G, et al. String stability and flow stability for nonlinear vehicular platoons with actuator faults based on an improved quadratic spacing policy[J]. Nonlinear Dynamics, 2020, 102(4): 2725-2738.
    [24] JOND H B, PLATOŠ J. Differential game-based optimal control of autonomous vehicle convoy[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(3): 2903-2919.
    [25] LIU P, KURT A, OZGUNER U, et al. Distributed model predictive control for cooperative and flexible vehicle platooning[J]. IEEE Transactions on Control Systems Technology, 2018, 27(3): 1115-1128.
    [26] HOSSAIN T, HABIBULLAH H, ISLAM R. Steering and speed control system design for autonomous vehicles by developing an optimal hybrid controller to track reference trajectory[J]. Machines, 2022: 10(6): 420.
    [27] 于树友, 谢华城, 李文博, 等. 数字孪生驱动的商用车队列纵横向控制[J]. 吉林大学学报(工学版), 2025, 55(6): 1994-2002.

    YU Shu-you, XIE Hua-cheng, LI Wen-bo, et al. Digital twin driven longitudinal and lateral control of truck platoon[J]. Journal of Jilin University (Engineering and Technology Edition), 2025, 55(6): 1994-2002.
    [28] 严运兵, 黄博文, 唐学权, 等. 分布驱动无人车在极限工况下的稳定跟踪控制[J]. 机械设计与制造, 2024(10): 126-132.

    YAN Yun-bing, HUANG Bo-wen, TANG Xue-quan, et al. Stable tracking control of distributed driven unmanned vehicle in limit condition[J]. Machinery Design and Manufacture, 2024(10): 126-132.
    [29] JIANG J J, ASTOLFI A. Lateral control of an autonomous vehicle[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(2): 228-237.
    [30] 曲大义, 孟奕名, 王韬, 等. 基于分子力场的网联自主车辆跟驰安全特性及模型[J]. 交通运输系统工程与信息, 2023, 23(6): 33-41.

    QU Da-yi, MENG Yi-ming, WANG Tao, et al. Car-following model and safety characteristics of connected autonomous vehicle based on molecular force field[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(6): 33-41.
    [31] 冀杰, 李以农, 郑玲, 等. 车辆自动驾驶系统纵向和横向运动综合控制[J]. 中国公路学报, 2010, 23(5): 119-126.

    JI Jie, LI Yi-nong, ZHENG Ling, et al. Integrated control of longitudinal and lateral motion for autonomous vehicle driving system[J]. China Journal of Highway and Transport, 2010, 23(5): 119-126.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  78
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-04
  • 录用日期:  2025-03-12
  • 修回日期:  2025-01-06
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回