留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于历史航迹数据的民用航空器极曲线估算方法

王兵 张博雯 彭瑛

王兵, 张博雯, 彭瑛. 基于历史航迹数据的民用航空器极曲线估算方法[J]. 交通运输工程学报, 2025, 25(4): 328-339. doi: 10.19818/j.cnki.1671-1637.2025.04.023
引用本文: 王兵, 张博雯, 彭瑛. 基于历史航迹数据的民用航空器极曲线估算方法[J]. 交通运输工程学报, 2025, 25(4): 328-339. doi: 10.19818/j.cnki.1671-1637.2025.04.023
WANG Bing, ZHANG Bo-wen, PENG Ying. Estimation method for civil aircraft drag polar based on historical trajectory data[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 328-339. doi: 10.19818/j.cnki.1671-1637.2025.04.023
Citation: WANG Bing, ZHANG Bo-wen, PENG Ying. Estimation method for civil aircraft drag polar based on historical trajectory data[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 328-339. doi: 10.19818/j.cnki.1671-1637.2025.04.023

基于历史航迹数据的民用航空器极曲线估算方法

doi: 10.19818/j.cnki.1671-1637.2025.04.023
基金项目: 

国家重点研发计划 2022YFB2602401

详细信息
    作者简介:

    王兵(1979-),男,河南洛阳人,南京航空航天大学讲师,工学博士,从事民用航空器轨迹运行研究

    通讯作者:

    WANG Bing (1979-), male, lecturer, PhD, evanwb@163.com

  • 中图分类号: U8

Estimation method for civil aircraft drag polar based on historical trajectory data

Funds: 

National Key R&D Program of China 2022YFB2602401

Article Text (Baidu Translation)
  • 摘要: 为有效解决民用航空器极曲线参数不能通过公开渠道获取的问题,提出了一种基于历史航迹数据的航空器极曲线估算方法;根据航空器性能与推力模型构建了极曲线参数优化模型;通过基于NUTS采样器的马尔可夫链蒙特卡洛(MCMC)算法对优化模型求解,得到了航空器的极曲线参数;分别以某A320航空器的3次直飞航班及当前民用航空的12种主流机型(1 564个航班)为例,通过估算极曲线并对航线爬升阶段进行航迹预测,对比预测剖面与快速存取记录器(QAR)数据中的爬升剖面,验证了方法的有效性与普适性。研究结果表明:对于典型样本航班,生成的爬升剖面(爬升至巡航高度34 100英尺,约10 400 m)与QAR数据中的爬升剖面相比,平均爬升率相对误差为1.16%,气压高度最大绝对误差在500英尺(约152 m)以内,与使用传统的航空器性能数据库中参考极曲线所预测得到的爬升剖面相比,预测精度得到了明显提高;对于批量样本航班,其中占比96.48%的航班预测爬升剖面绝对误差在1 000英尺(约300 m)以内,所有航班最大绝对误差的平均值为497.71英尺(约151.7 m)。所建立的航空器极曲线估算方法适用于大批量航班,可为高精度民用航空器轨迹仿真与预测工作提供技术支撑。

     

  • 图  1  某航班爬升阶段实际爬升率与修正爬升率对比

    Figure  1.  Comparison of actual and calibrated climb rates during a flight's climb phase

    图  2  基于NUTS采样的MCMC算法流程

    Figure  2.  Flow of MCMC algorithm based on NUTS

    图  3  典型爬升剖面

    Figure  3.  Typical flight climb profile

    图  4  某样本航班高度剖面

    Figure  4.  Altitude profile of the sample flight

    图  5  样本航班极曲线示例

    Figure  5.  Example of sample flight drag polar

    图  6  样本航班不同爬升剖面及爬升率对比

    Figure  6.  Comparison of different climb profiles and climb rate of sample flight

    图  7  各机型预测剖面绝对误差最大值分布

    Figure  7.  Distribution of maximum absolute error of different flights

    表  1  从QAR数据中所提取的字段信息

    Table  1.   Data fields extracted from QAR

    字段名 全称 描述
    TIME Time stamp 时间戳
    PA Pressure altitude 气压高度
    CAS Calibrated air speed 校正空速
    Mach Mach number 马赫数
    GW Gross weight 航空器总重
    TAT Total air temperature 总温
    BANK Bank 坡度
    下载: 导出CSV

    表  2  某A320航空器的CD0λ计算结果

    Table  2.   Results of CD0 and λ of the A320 aircraft

    马赫数 CD0 λ 马赫数 CD0 λ
    0.50 0.006 9 0.037 5 0.65 0.014 2 0.040 2
    0.51 0.007 1 0.037 5 0.66 0.014 3 0.040 3
    0.52 0.007 4 0.037 6 0.67 0.014 3 0.040 3
    0.53 0.007 6 0.037 7 0.68 0.014 4 0.040 3
    0.54 0.008 5 0.038 1 0.69 0.014 7 0.040 4
    0.55 0.008 6 0.038 1 0.70 0.015 0 0.040 4
    0.56 0.009 1 0.038 3 0.71 0.015 5 0.040 6
    0.57 0.009 6 0.038 5 0.72 0.016 1 0.040 9
    0.58 0.010 6 0.038 8 0.73 0.016 5 0.041 0
    0.59 0.010 8 0.038 8 0.74 0.016 8 0.041 1
    0.60 0.011 2 0.039 1 0.75 0.017 3 0.041 3
    0.61 0.011 6 0.039 3 0.76 0.017 5 0.041 5
    0.62 0.013 2 0.039 8 0.77 0.017 8 0.041 6
    0.63 0.013 6 0.040 0 0.78 0.018 5 0.042 0
    0.64 0.014 2 0.040 2 0.79 0.019 3 0.042 4
    下载: 导出CSV

    表  3  批量航班绝对误差分布情况

    Table  3.   Distribution of absolute errors of batch flights

    机型 航班数 预测剖面最大绝对误差不大于1 000英尺 参考剖面最大绝对误差不大于1 000英尺 预测剖面最大绝对误差平均值/英尺 参考剖面最大绝对误差平均值/英尺
    航班数 占比/% 航班数 占比/%
    A320ceo 182 176 96.70 37 20.33 434.17 2 241.14
    A320neo 299 286 95.65 78 26.09 478.32 1 713.27
    A319 36 36 100.00 3 8.33 600.66 2 673.99
    A321 124 121 97.58 31 25.00 592.69 1 936.02
    A333 74 71 95.95 3 4.05 646.24 3 185.36
    A332 34 33 97.06 1 2.94 638.80 4 053.52
    B737 67 64 95.52 1 1.49 597.68 4 152.54
    B738 672 648 96.43 92 13.69 459.05 2 092.71
    B77W 20 19 95.00 0 0.00 638.18 5 418.98
    B788 21 21 100.00 0 0.00 557.27 2 414.86
    B789 18 17 94.44 0 0.00 554.31 5 224.97
    E190 17 17 100.00 0 0.00 515.42 4 496.63
    总计 1 564 1 509 96.48 246 15.73 497.71 2 330.00
    下载: 导出CSV
  • [1] POST J. The next generation air transportation system of the United States: vision, accomplishments, and future directions[J]. Engineering, 2021, 7(4): 427-430.
    [2] BENAVIDES J V, KANESHIGE J, SHARMA S, et al. Implementation of a trajectory prediction function for trajectory based operations[C]//AIAA. Atmospheric Flight Mechanics Conference. Reston: AIAA, 2014: 324-337.
    [3] 惠辉辉, 魏斌. 四维航迹预测技术概述[J]. 科技创新与应用, 2020(33): 18-21.

    HUI Hui-hui, WEI Bin. Overview of four-dimensional track prediction technology[J]. Technology Innovation and Application, 2020(33): 18-21.
    [4] 朱海波, 张军峰, 刘杰, 等. 民用航空器四维航迹预测技术综述[J]. 航空计算技术, 2017, 47(2): 54-58.

    ZHU Hai-bo, ZHANG Jun-feng, LIU Jie, et al. A survey of four dimensional trajectory prediction for civil aircrafts[J]. Aeronautical Computing Technique, 2017, 47(2): 54-58.
    [5] ZENG W L, CHU X, XU Z, et al. Aircraft 4D trajectory prediction in civil aviation: A review[J]. Aerospace, 2022, 9(2): 91-99.
    [6] 来靖晗, 刘博文, 谷润平, 等. 基于BADA模型的平飞阻力变化规律分析[J]. 航空科学技术, 2020, 31(9): 79-83.

    LAI Jing-han, LIU Bo-wen, GU Run-ping, et al. Analysis on change rules of level flight drag based on BADA model[J]. Aeronautical Science & Technology, 2020, 31(9): 79-83.
    [7] 吕波, 王超. 改进的扩展卡尔曼滤波在航空器4D航迹预测算法中的应用[J]. 计算机应用, 2021, 41(增1): 277-282.

    LYU Bo, WANG Chao. Application of improved extended kalman filtering in aircraft 4D trajectory prediction algorithm[J]. Journal of Computer Applications, 2021, 41(S1): 277-282.
    [8] TANG X M, GU J W, SHEN Z Y, et al. A hybrid method combining improved k-means algorithm with BADA model for generating nominal flight profiles[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2016(33): 414-424.
    [9] 王兵, 邹润原, 常哲宁. 基于改进模拟退火的航空器起飞质量估算方法[J]. 航空学报, 2023, 44(16): 328090.

    WANG Bing, ZOU Run-yuan, CHANG Zhe-ning. Aircraft takeoff mass estimation method based on improved simulated annealing algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 328090.
    [10] 张军峰, 蒋海行, 武晓光, 等. 基于BADA及航空器意图的四维航迹预测[J]. 西南交通大学学报, 2014, 49(3): 553-558.

    ZHANG Jun-feng, JIANG Hai-hang, WU Xiao-guang, et al. 4D trajectory prediction based on BADA and aircraft intent[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 553-558.
    [11] ATASOY V E. Detailed analysis of aircraft fuel flow using data from flight data recorder[J]. Transportation Research Record: Journal of the Transportation Research Board, 2023(2677): 759-772.
    [12] EUROCONTRO L. Model accuracy report for the base of aircraft data(BADA) revision 2.5[R]. Brussels: EUROCONTROL, 1996.
    [13] VAN ES G W H. Rapid estimation of the zero-lift drag coefficient of transport aircraft[J]. Journal of Aircraft, 2002, 39(4): 597-599.
    [14] SFORZA P M. Estimating zero-lift drag coefficients and maximum L/D in subsonic flight[C]//AIAA. 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 1-18.
    [15] POLL D I A, SCHUMANN U. An estimation method for the fuel burn and other performance characteristics of civil transport aircraft during cruise: Part 2, determining the aircraft's characteristic parameters[J]. The Aeronautical Journal, 2021, 125(1284): 296-340.
    [16] APROVITOLA A, DI NUZZO P E, PEZZELLA G, et al. Aerodynamic analysis of a supersonic transport aircraft at landing speed conditions[J]. Energies, 2021, 14(20): 411-433.
    [17] FELIX B S, PERRON C, AHUJA J, et al. Development of a parametric drag polar approximation for conceptual design[C]//AIAA. Aviation 2023 Forum. Reston: AIAA, 2023: 4266-4282.
    [18] XIE J C, CAI Y, CHEN M Z, et al. A multi-fidelity aerodynamic analysis method for transonic transport aircraft conceptual design and mission analysis[C]//AIAA. Aviation 2021 Forum. Reston: AIAA, 2021: 2433-2446.
    [19] 董演泉, 何松林, 庄景堂. 从动态飞行获得极曲线及相关性研究[J]. 飞行力学, 1992, 10(4): 48-54.

    DONG Yan-quan, HE Song-lin, ZHUANG Jing-tang. The drag polar obtained from dynamic flight and correlativity research[J]. Flight Dynamics, 1992, 10(4): 48-54.
    [20] 艾剑良, 邓建华, 傅金华. 极大似然法在飞机极曲线辨识中的应用[J]. 飞行力学, 1996, 14(1): 60-65.

    AI Jian-liang, DENG Jian-hua, FU Jin-hua. The application of maximum likelihood method to identify the flight drag polar[J]. Flight Dynamics, 1996, 14(1): 60-65.
    [21] 汤海荣. 试飞数据处理方法——升力曲线和极曲线[J]. 民用飞机设计与研究, 2011(2): 21-25.

    TANG Hai-rong. A method to process flight test data[J]. Civil Aircraft Design and Research, 2011(2): 21-25.
    [22] SUN J Z, HOEKSTRA J M, ELLERBROEK J. Estimating aircraft drag polar using open flight surveillance data and a stochastic total energy model[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 391-404.
    [23] 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 29-65.

    YAN Chao. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 29-65.
    [24] 顾春平. 空中交通管制监视新技术简介[J]. 现代雷达, 2010, 32(9): 1-5.

    GU Chun-ping. Introduction of new ATC surveillance techniques[J]. Modern Radar, 2010, 32(9): 1-5.
    [25] ALI B S, TAIB N A. A study on geometric and barometric altitude data in automatic dependent surveillance broadcast (ADS-B) messages[J]. Journal of Navigation, 2019, 72(5): 1140-1158.
    [26] ZHANG M, HUANG Q W, LIU S H, et al. Fuel consumption model of the climbing phase of departure aircraft based on flight data analysis[J]. Sustainability, 2019, 11(6): 4362-4384.
    [27] 蔡天净, 唐瀚. Savitzky-Golay平滑滤波器的最小二乘拟合原理综述[J]. 数字通信, 2011, 38(1): 63-68, 82.

    CAI Tian-jing, TANG Han. Summary of least square fitting principle of Savitzky-Golay smoothing filter[J]. Digital Communication, 2011, 38(1): 63-68, 82.
    [28] 鲁一冰, 刘文清, 张玉钧, 等. 一种自适应层进式Savitzky-Golay光谱滤波算法及其应用[J]. 光谱学与光谱分析, 2019, 39(9): 2657-2663.

    LU Yi-bing, LIU Wen-qing, ZHANG Yu-jun, et al. An adaptive hierarchical Savitzky-Golay spectral filtering algorithm and its application[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2657-2663.
    [29] 曾明, 刘伟, 邹建军. 空气动力学基础[M]. 北京: 科学出版社, 2016.

    ZENG Ming, LIU Wei, ZOU Jian-jun. Fundamentals of aerodynamics[M]. Beijing: China Science Press, 2016.
    [30] SUN J Z, HOEKSTRA J M, ELLERBROEK J. OpenAP: An open-source aircraft performance model for air transportation studies and simulations[J]. Aerospace, 2020, 7(8): 104-107.
    [31] SVOBODA C. Turbofan engine database as a preliminary design tool[J]. Aircraft Design, 2000, 3(1): 17-31.
    [32] International Civil Aviation Organization(ICAO). ICAO aircraft engine emissions databank[DB]. https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank, 2023.
    [33] 杜卓铭, 张军峰, 苗洪连, 等. 考虑推力意图的航空器连续爬升垂直剖面预测[J]. 北京航空航天大学学报, 2024, 50(4): 1347-1353.

    DU Zhuo-ming, ZHANG Jun-feng, MIAO Hong-lian, et al. Aircraft vertical profile prediction for continuous climb based on thrust intention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(4): 1347-1353.
    [34] JENKINSON L R, SIMPKIN P, RHODES D. Civil jet aircraft design[M]. Washington DC: American Institute of Aeronautics and Astronautics, 1999.
    [35] BORGONOVO E, PLISCHKE E. Sensitivity analysis: A review of recent advances[J]. European Journal of Operational Research, 2016, 248(3): 869-887.
    [36] FANG B P, DONG Z R, ZHAO C, et al. An uncertain optimization method based on adaptive discrete approximation rejection sampling for stochastic programming with incomplete knowledge of uncertainty[J]. Arabian Journal for Science and Engineering (Springer Science and Business Media BV), 2023, 48(2): 1399-1425.
    [37] MAHMOUD H A, SHARAF M, EL-MELIGY M A. An adaptive robust optimization model for transmission expansion planning considering uncertain intervals[J]. International Journal of Electrical Power and Energy Systems, 2024, 157: 1-11.
    [38] HAO Z J, WANG J M, MA T F, et al. Evaluation method of ship electronic system availability based on Bayesian inference[C]//IEEE. 2022 4th International Academic Exchange Conference on Science and Technology Innovation (IAECST). New York: IEEE, 2022: 5330-5341.
    [39] 茆诗松, 汤银才. 贝叶斯统计[M]. 北京: 中国统计出版社, 2012.

    MAO Shi-song, TANG Ying-cai. Bayesian statistics[M]. Beijing: China Statistics Press, 2012.
    [40] ANDRIEU C, DE FREITAS N, DOUCET A, et al. An introduction to MCMC for machine learning[J]. Machine Learning, 2003(50): 5-43.
    [41] GEYER C J. Introduction to Markov chain Monte Carlo[M]. New York: Chapman and Hall/CRC, 2011.
    [42] HOFFMAN M, GELMAN A. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo[J]. Journal of Machine Learning Research, 2018, 15: 1593-1623.
    [43] 陈红英. 飞机性能工程[M]. 大连: 大连海事大学出版社, 2019.

    CHEN Hong-ying. Aircraft performance engineering[M]. Dalian: Dalian Maritime University Press, 2019.
    [44] 王兵, 张颖, 谢华, 等. 一种基于机载数据的民用航空器飞行阶段划分方法[J]. 交通运输工程学报, 2022, 22(1): 216-228. doi: 10.19818/j.cnki.1671-1637.2022.01.018

    WANG Bing, ZHANG Ying, XIE Hua, et al. A flight phase identification method based on airborne data of civil aircraft[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 216-228. doi: 10.19818/j.cnki.1671-1637.2022.01.018
    [45] 田勇, 万莉莉. 飞行性能工程学[M]. 北京: 科学出版社, 2015.

    TIAN Yong, WAN Li-li. Flight performance engineering[M]. Beijing: Science Press, 2015.
    [46] 吕弢, 姚恩涛, 郭伟. 基于压电阀控制的飞机全、静压管路延迟特性测试系统设计[J]. 东南大学学报: 自然科学版, 2010, 40(增1): 321-325.

    LYU Tao, YAO En-tao, GUO Wei. Test system for pipeline delay of aero pitot-static system based on piezoelectric valve[J]. Journal of Southeast University: Natural Science Edition, 2010, 40(S1): 321-325.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  59
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25
  • 录用日期:  2025-03-12
  • 修回日期:  2025-01-06
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回