Causes of arch expansion and anti-arching design method for cement-stablized base layer in arid desert regions of northwest China
-
摘要: 针对中国西北干旱荒漠区水稳基层近几年出现的严重拱胀病害, 常规方法多采用被动防治措施。本文以新疆多条路段出现拱胀病害的水泥稳定砾石基层为研究对象, 采用现场调研、室内试验与理论分析相结合的方法, 钻取拱胀与非拱胀路段的基层及路基芯样, 测试其理化特性、力学强度、微观形貌与物相组成等, 开展了多因素控制下的室内膨胀变形试验, 并通过对优化后的材料与结构进行水-热-盐多场耦合试验验证其抗拱胀效果, 旨在系统探明水稳基层拱胀的多场耦合致灾机理, 并据此提出一套主动防治的材料与结构一体化优化设计方法。研究结果表明: 西北盐渍土地区水泥稳定砾石基层的拱胀病害是由"水-热-盐"多因素耦合作用引发的, 其根本机理在于基层中侵入的硫酸盐离子(含量达《公路路面基层施工技术细则》(JTG/T F20—2015)规范限值1.5~3.6倍)与水泥水化产物发生化学反应, 生成钙矾石、石膏等膨胀性物质, 导致基层抗压强度平均降低59.74%, 高温则显著加速了盐分迁移与反应进程; 以"控盐、降温、降水泥、调结构"为核心的主动防治方法表明材料优化是关键, 采用低水泥剂量的大粒径(37.5 mm)与超大粒径(53 mm)基层可分别降低膨胀变形12.12%与27.27%;设置级配碎石隔热层可使基层顶面膨胀应变降低约83%, 级配砾石隔断层可有效阻断毛细水盐迁移并将盐分富集浓度从5.1%降至3.9%;针对一般低盐、极端高温、中高盐渍土及高盐高温复合地区, 推荐分别采用抗拱胀基层、抗拱胀基层+隔热层、隔断层+抗拱胀基层、隔热层+抗拱胀基层+隔断层的复合结构, 实现了从机理到实践的分区分类针对性防控。Abstract: To address the severe arch expansion that has emerged in recent years in cement-stablized base layers in the arid desert regions of northwest China, passive prevention measures were conventionally applied. With the cement-stablized base layers exhibiting arch expansion in multiple sections of Xinjiang as research objects, by combining field investigations, laboratory tests, and theoretical analysis, core samples from both arched and non-arched sections of the base and subgrade were drilled to test their physicochemical properties, mechanical strength, microscopic morphology, and phase composition. Controlled laboratory expansion tests under multiple factors were conducted, and the anti-arching effect was verified through water-heat-salt multi-field coupling tests on optimized materials and structures to systematically elucidate the multi-field coupling disaster mechanism of arching in cement-stablized base layers. Accordingly, a set of integrated optimization design methods for materials and structures was proposed for active prevention. Research results indicates that the arch expansion in cement-stablized base layers in the northwestern saline soil regions is triggered by the coupled effects of "water-heat-salt" factors. The fundamental mechanism lies in the chemical reaction between sulfate ions (with contents 1.5-3.6 times the limit specified in the Technical Guidelines for Construction of Highway Roadbases (JTG/T F20—2015)) and cement hydration products, generating expansive substances such as ettringite and gypsum. This leads to an average reduction of 59.74% in the compressive strength of the base layers, while high temperatures significantly accelerate salt migration and reaction processes. The active prevention and control method centered on "salt control, temperature reduction, cement reduction, and structural adjustment" indicates that material optimization is the key. Using large-grade (37.5 mm) and extra-large-grade (53 mm) base layers with low cement content reduces expansion deformation by 12.12% and 27.27%, respectively. The installation of a graded crushed stone insulation layer reduces the expansion strain at the top of the base layer by approximately 83%. A graded gravel interception layer effectively blocks capillary water-salt migration and reduces salt enrichment concentration from 5.1% to 3.9%. For generally low-salt, extremely high temperature, medium-to-high saline soil, and high-salt-high-temperature composite regions, the combinations of anti-arching base layer, anti-arching base layer + insulation layer, interception layer + anti-arching base layer, and insulation layer + anti-arching base layer + interception layer are recommended, respectively. This achieves targeted, zonal, and categorized prevention and control from mechanism to practice.
-
表 1 不同层位样品的易溶盐含量检测结果
Table 1. Testing results of soluble salt content for different layers samples
桩号 距拱胀水平距离/m 层位 Cl-含量/% SO42-含量/% Na+含量/% 总离子含量/% K1082+250 5 下基层 0.057 0.243 0.007 0 0.445 7 2 下基层 0.053 0.258 0.010 0 0.425 8 0 路基土 0.045 0.899 0.000 2 1.225 3 0 下基层 0.061 0.786 0.029 4 1.003 7 0 上基层 0.060 0.398 0.013 7 0.616 9 K1076+910 5 下基层 0.019 0.117 0.038 4 0.305 9 0 路基土 0.002 0.608 0.074 3 0.998 7 0 下基层 0.016 0.489 0.011 2 0.754 9 0 上基层 0.007 0.378 0.051 9 0.595 1 5 下基层 0.030 0.131 0.041 1 0.348 6 表 2 道路沿线水质检测结果
Table 2. Results of water quality testing along the road
路段名称 pH值 Cl-浓度/(mg·L-1) SO42-浓度/(mg·L-1) 不溶物浓度/(mg·L-1) 可溶物浓度/(mg·L-1) G30阿喀高速 7.9 185 3 972 25 450 G30喀和高速 8.1 226 4 021 25 513 S16麦喀高速 7.5 335 3 650 32 435 S13三莎高速 7.6 346 3 000 20 321 表 3 抗拱胀水泥稳定砾石级配
Table 3. Anti-arching expansion gradation of cement stabilized gravel
类型 通过筛孔(mm)质量百分率/% 53 37.5 31.5 19 9.5 4.75 2.36 0.6 0.075 超大粒径级配 100 65~75 57~64 25~35 18~28 10~20 5~11 2~5 大粒径级配 100 100 88~100 54~64 36~46 26~36 18~26 9~14 2~6 表 4 级配碎石隔热层级配范围
Table 4. Gradation of graded stone thermal insulation layer
通过筛孔(mm)质量百分率/% 31.5 19 9.5 4.75 2.36 0.6 0.075 100 60~70 45~56 35~45 22~29 8~14 2~5 表 5 级配砾石隔断层级配范围
Table 5. Gradation of graded gravel isolation layer
通过筛孔(mm)质量百分率/% 37.5 31.5 19 9.5 4.75 2.36 0.6 0.075 100 87~100 45~61 25~35 15~25 8~18 4~12 2~5 表 6 试验结构
Table 6. Structure for experiments
层位 结构1 结构2 结构3 面层 AC-16 AC-16 AC-16 隔热层 级配碎石隔热层 基层 普通基层(水泥4.5%) 低水泥剂量抗拱胀基层(水泥3%,最大粒径37.5 mm或53 mm) 低水泥剂量抗拱胀基层(水泥3%,最大粒径37.5 mm或53 mm) 底基层 天然沙砾 级配砾石隔断层 天然沙砾 路床 天然沙砾 天然沙砾 天然沙砾 -
[1] 林宇坤, 宋玲, 刘杰, 等. 荒漠区沥青路面拱胀病害机理及影响因素分析[J]. 公路交通科技, 2024, 41(4): 31-41.LIN Yu-kun, SONG Ling, LIU Jie, et al. Analysis on mechanism and influencing factor of asphalt pavement arch expansion disease in desert area[J]. Journal of Highway and Transportation Research and Development, 2024, 41(4): 31-41. [2] ZHANG M Y, ZHANG J, DING L T, et al. Sulfate-induced expansion of cement treated road base: Deterioration law of performance and air-void structure change under water-heat-salt coupling effect[J]. Construction and Building Materials, 2022, 359: 129475. doi: 10.1016/j.conbuildmat.2022.129475 [3] 尧俊凯, 叶阳升, 王鹏程, 等. 硫酸盐侵蚀水泥改良路基段上拱研究[J]. 岩土工程学报, 2019, 41(4): 782-788.YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, et al. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. [4] 冯瑞玲, 王随柱, 吴立坚, 等. 新疆硫酸盐渍土地区沥青路面鼓胀变形机理研究[J]. 岩土工程学报, 2021, 43(9): 1739-1745.FENG Rui-ling, WANG Sui-zhu, WU Li-jian, et al. Bulging deformation mechanism of asphalt pavement in sulfate saline soil areas of Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1739-1745. [5] 袁江, 程怀磊, 孙立军, 等. 基于温度应力分析的半刚性基层沥青路面拱胀病害成因研究[J]. 中国公路学报, 2024, 37(12): 182-196.YUAN Jiang, CHENG Huai-lei, SUN Li-jun, et al. Causes of arch expansion on semi-rigid base asphalt pavement based on temperature-stress analysis[J]. China Journal of Highway and Transport, 2024, 37(12): 182-196. [6] WANG C H, LIU J K, CHEN S C, et al. Polyvinyl alcohol fiber cement-stabilized macadam: a review and performance evaluation[J]. Journal of Traffic and Transportation Engineering (English Edition), 2024, 11(3): 406-423. doi: 10.1016/j.jtte.2024.01.001 [7] 赵昕, 沙爱民, 洪斌. 半刚性基层拱胀现象的力学分析[J]. 公路交通科技, 2008, 25(4): 42-46.ZHAO Xin, SHA Ai-min, HONG Bin. Mechanical analysis of vaulted expansion of semi-rigid base[J]. Journal of Highway and Transportation Research and Development, 2008, 25(4): 42-46. [8] 姚爱玲, 韩方元, 许敏, 等. 水泥稳定碎石基层混合料的膨胀性分析[J]. 科学技术与工程, 2020, 20(12): 4902-4908.YAO Ai-ling, HAN Fang-yuan, XU Min, et al. Swelling analysis of cement stabilized macadam mixture[J]. Science Technology and Engineering, 2020, 20(12): 4902-4908. [9] 姚爱玲, 王磊挺, 王军伟, 等. 水稳碎石基层膨胀性与收缩性对比分析[J]. 中国科技论文, 2021, 16(8): 863-868.YAO Ai-ling, WANG Lei-ting, WANG Jun-wei, et al. Comparative analysis of expansibility and contractility of cement stabilized macadam base[J]. China Sciencepaper, 2021, 16(8): 863-868. [10] YU D M, GUAN B W, HE R, et al. Sulfate attack of Portland cement concrete under dynamic flexural loading: A coupling function[J]. Construction and Building Materials, 2016, 115: 478-485. doi: 10.1016/j.conbuildmat.2016.02.052 [11] LITTLE D N, NAIR S, HERBERT B. Addressing sulfate-induced heave in lime treated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 110-118. doi: 10.1061/(ASCE)GT.1943-5606.0000185 [12] ROLLINGS R S, BURKES J P, ROLLINGS M P. Sulfate attack on cement-stabilized sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 364-372. doi: 10.1061/(ASCE)1090-0241(1999)125:5(364) [13] PUPPALA A J, SARIDE S, DERMATAS D, et al. Forensic investigations to evaluate sulfate-induced heave attack on a tunnel shotcrete liner[J]. Journal of Materials in Civil Engineering, 2010, 22(9): 914-922. doi: 10.1061/(ASCE)MT.1943-5533.0000087 [14] ZHU S Y, JI X P, LIU J, et al. Study on the decay laws and deterioration mechanism of mechanical properties of cement-stabilized gravel under water-heat-salt coupled conditions[J]. Construction and Building Materials, 2024, 453: 139142. doi: 10.1016/j.conbuildmat.2024.139142 [15] 谢红战. 沙漠戈壁地区水泥稳定碎石基层沥青路面拱胀机理分析及处治建议[J]. 公路工程, 2019, 44(5): 180-187.XIE Hong-zhan. Mechanism analysis and preventive measures of arch expansion of asphalt pavement on cement stabilized crushed stone base in Gobi Desert[J]. Highway Engineering, 2019, 44(5): 180-187. [16] 宋亮, 王选仓, 王朝辉. 公路水泥稳定基层拱胀机理与防治技术[M]. 北京: 人民交通出版社, 2021.SONG Liang, WANG Xuan-cang, WANG Chao-hui. Mechanism and prevention technology of arch expansion of highway cement stabilized base[M]. Beijing: China Communications Press, 2021. [17] 张莎莎, 曹俱源, 张毅, 等. 道面覆盖作用下砾质硫酸盐渍土道基水盐迁移及侵蚀特征交通运输工程学征[J]. 交通运输工程学报, 2025, 25(5): 131-144. doi: 10.19818/j.cnki.1671-1637.2025.05.010ZHANG Sha-sha, CAO Ju-yuan, ZHANG Yi, et al. Water and salt migration and erosion characteristics of gravel sulfate saline soil embankment under effect of pavement covering[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 131-144. doi: 10.19818/j.cnki.1671-1637.2025.05.010 [18] 杨效禹. 硫酸盐环境下水泥稳定碎石基层抗侵蚀措施试验研究. 北京: 北京交通大学, 2021.YANG Xiao-yu. Experimental study on anti erosion measures of cement stabilized macadam base in sulfate environment. Beijing: Beijing Jiaotong University, 2021. [19] 阿布力孜·艾海提. 水泥稳定基层防拱胀结构试验分析[J]. 中国公路, 2022(4): 112-113.ABULIZ·Aihaiti. Experimental analysis of anti-arch expansion structure of cement stabilized base[J]. China Highway, 2022(4): 112-113. [20] ZHANG X J, JI X P, YUAN T, et al. Research on the shrinkage and expansion deformation characteristics of large particle size cement-stabilized gravel LCSG-50[J]. Construction and Building Materials, 2025, 495: 143670. doi: 10.1016/j.conbuildmat.2025.143670 [21] 袁春兰. 高速公路水泥稳定砂砾基层拱胀机理及处治措施研究[J]. 西部交通科技, 2021(10): 22-23, 26.YUAN Chun-lan. Study on the mechanism and treatment measures of arch expansion of cement stabilized gravel base of expressway[J]. Western China Communications Science & Technology, 2021(10): 22-23, 26. [22] 张梦媛, 王选仓, 丁龙亭, 等. 大温差荒漠区路面拱胀及路基盐分迁移规律研究[J]. 公路交通科技, 2021, 38(8): 50-58, 66.ZHANG Meng-yuan, WANG Xuan-cang, DING Long-ting, et al. Study on pavement blowup and roadbed salt migration in desert areas with large temperature differences[J]. Journal of Highway and Transportation Research and Development, 2021, 38(8): 50-58, 66. [23] 程力. 基于SEM试验的水泥稳定基层拱胀规律探究[J]. 中国公路, 2021(11): 150-151.CHENG Li. Study on the arch expansion law of cement stabilized base layer based on SEM test[J]. China Highway, 2021(11): 150-151. [24] 张莎莎, 刘亚超, 杨晓华, 等. 粗粒硫酸盐渍土区高速铁路水泥固化级配碎石变形特性[J]. 交通运输工程学报, 2023, 23(1): 93-104.ZHANG Sha-sha, LIU Ya-chao, YANG Xiao-hua, et al. Deformation characteristics of cement stabilized macadam aggregate of high-speed railway in coarse-grained sulfate soil area[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 93-104. [25] 王选仓, 朱世煜, 张梦媛, 等. 大温差荒漠区水泥稳定砂砾材料拱胀的宏-微观研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(4): 87-95.WANG Xuan-cang, ZHU Shi-yu, ZHANG Meng-yuan, et al. Macro-micro study on arch expansion of cement stabilized gravel material in desert area with large temperature difference[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(4): 87-95. [26] 张宏, 张海龙, 王智远. 沙漠区沥青混凝土路面横向隆起现象的力学分析[J]. 公路交通科技, 2017, 34(7): 8-13.ZHANG Hong, ZHANG Hai-long, WANG Zhi-yuan, et al. Mechanical analysis of asphalt concrete pavement transverse blowup in desert area[J]. Journal of Highway and Transportation Research and Development, 2017, 34(7): 8-13. [27] LIU C B, GAO J M, CHEN F, et al. Coupled effect of relative humidity and temperature on the degradation of cement mortars partially exposed to sulfate attack[J]. Construction and Building Materials, 2019, 216: 93-100. doi: 10.1016/j.conbuildmat.2019.05.001 [28] ZENG Q P, WANG C, LUO Y L, et al. Effect of temperatures on TSA in cement mortars under electrical field[J]. Construction and Building Materials, 2018, 162: 88-95. doi: 10.1016/j.conbuildmat.2017.12.015 [29] QIN S S, ZOU D J, LIU T J, et al. A chemo-transport-damage model for concrete under external sulfate attack[J]. Cement and concrete research, 2020, 132: 106048. doi: 10.1016/j.cemconres.2020.106048 [30] SONG L, CHEN S C, WANG C H, et al. Engineering properties on salt rock as subgrade filler in dry salt lake: Water retention characteristics and water migration patterns[J]. Construction and Building Materials, 2023, 406: 133414. doi: 10.1016/j.conbuildmat.2023.133414 [31] GU R, WANG J, LI B P, et al. Experimental study on mechanical properties and compressive constitutive model of recycled concrete under sulfate attack considering the effects of multiple factors[J]. Buildings, 2024, 14(9): 2761. doi: 10.3390/buildings14092761 [32] SHAFIQUE U, ANWAR J, ALI MUNAWAR M, et al. Chemistry of ice: Migration of ions and gases by directional freezing of water[J]. Arabian Journal of Chemistry, 2016, 9: S47-S53. doi: 10.1016/j.arabjc.2011.02.019 [33] 纪小平, 王涛, 周泽洪, 等. 振动法水泥稳定砾石的力学疲劳特性与强度标准[J]. 建筑材料学报, 2018, 21(5): 761-767, 774.JI Xiao-ping, WANG Tao, ZHOU Ze-hong, et al. Mechanical and fatigue properties as well as strength criteria of cement stabilized gravel produced by vibration compaction method[J]. Journal of Building Materials, 2018, 21(5): 761-767, 774. [34] 蒋应军, 王煜鑫, 周传荣, 等. 垂直振动成型CTB-50水泥稳定碎石抗压强度增长规律及预测模型[J]. 硅酸盐通报, 2023, 42(8): 3045-3054.JIANG Ying-jun, WANG Yu-xin, ZHOU Chuan-rong, et al. Compressive strength growth law and prediction model for CTB-50 cement-stabilized macadam based on vertical vibration compression[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 3045-3054. [35] 肖宪普, 谢康, 李新志, 等. 高速铁路级配碎石填料振动压实劣化机制研究[J]. 铁道科学与工程学报, 2024, 21(5): 1701-1713.XIAO Xian-pu, XIE Kang, LI Xin-zhi, et al. Degradation mechanism of vibratory compaction of high-speed railway graded gravel fillers[J]. Journal of Railway Science and Engineering, 2024, 21(5): 1701-1713. [36] FAN M, SU D, ZHANG N, et al. Optimizing parameter combinations for clump models enabled by the bubble packing algorithm: Insights from geometrical and morphological approximation of typical geotechnical particles[J]. Computers and Geotechnics, 2025, 180: 107061. doi: 10.1016/j.compgeo.2025.107061 -
下载: